Biology Research Works
Permanent URI for this collectionhttp://hdl.handle.net/1903/13
Browse
3 results
Search Results
Item New Sex Chromosomes in Lake Victoria Cichlid Fishes (Cichlidae: Haplochromini)(MDPI, 2022-04-30) Kocher, Thomas D.; Behrens, Kristen A.; Conte, Matthew A.; Aibara, Mitsuto; Mrosso, Hillary D. J.; Green, Elizabeth C. J.; Kidd, Michael R.; Nikaido, Masato; Koblmüller, StephanAfrican cichlid fishes harbor an extraordinary diversity of sex-chromosome systems. Within just one lineage, the tribe Haplochromini, at least 6 unique sex-chromosome systems have been identified. Here we focus on characterizing sex chromosomes in cichlids from the Lake Victoria basin. In Haplochromis chilotes, we identified a new ZW system associated with the white blotch color pattern, which shows substantial sequence differentiation over most of LG16, and is likely to be present in related species. In Haplochromis sauvagei, we found a coding polymorphism in amh that may be responsible for an XY system on LG23. In Pundamilia nyererei, we identified a feminizing effect of B chromosomes together with XY- and ZW-patterned differentiation on LG23. In Haplochromis latifasciatus, we identified a duplication of amh that may be present in other species of the Lake Victoria superflock. We further characterized the LG5-14 XY system in Astatotilapia burtoni and identified the oldest stratum on LG14. This species also showed ZW differentiation on LG2. Finally, we characterized an XY system on LG7 in Astatoreochromis alluaudi. This report brings the number of distinct sex-chromosome systems in haplochromine cichlids to at least 13, and highlights the dynamic evolution of sex determination and sex chromosomes in this young lineage.Item Ecomorphological divergence and habitat lability in the context of robust patterns of modularity in the cichlid feeding apparatus(Springer Nature, 2020-08-25) Conith, Andrew J.; Kidd, Michael R.; Kocher, Thomas D.; Albertson, R. CraigAdaptive radiations are characterized by extreme and/or iterative phenotypic divergence; however, such variation does not accumulate evenly across an organism. Instead, it is often partitioned into sub-units, or modules, which can differentially respond to selection. While it is recognized that changing the pattern of modularity or the strength of covariation (integration) can influence the range or rate of morphological evolution, the relationship between shape variation and covariation remains unclear. For example, it is possible that rapid phenotypic change requires concomitant changes to the underlying covariance structure. Alternatively, repeated shifts between phenotypic states may be facilitated by a conserved covariance structure. Distinguishing between these scenarios will contribute to a better understanding of the factors that shape biodiversity. Here, we explore these questions using a diverse Lake Malawi cichlid species complex, Tropheops, that appears to partition habitat by depth. We construct a phylogeny of Tropheops populations and use 3D geometric morphometrics to assess the shape of four bones involved in feeding (mandible, pharyngeal jaw, maxilla, pre-maxilla) in populations that inhabit deep versus shallow habitats. We next test numerous modularity hypotheses to understand whether fish at different depths are characterized by conserved or divergent patterns of modularity. We further examine rates of morphological evolution and disparity between habitats and among modules. Finally, we raise a single Tropheops species in environments mimicking deep or shallow habitats to discover whether plasticity can replicate the pattern of morphology, disparity, or modularity observed in natural populations. Our data support the hypothesis that conserved patterns of modularity permit the evolution of divergent morphologies and may facilitate the repeated transitions between habitats. In addition, we find the lab-reared populations replicate many trends in the natural populations, which suggests that plasticity may be an important force in initiating depth transitions, priming the feeding apparatus for evolutionary change.Item Visual sensitivities tuned by heterochronic shifts in opsin gene expression(2008-05-23) Carleton, Karen L.; Spady, Tyrone C; Streelman, J. Todd; Kidd, Michael R.; McFarland, William N.; Loew, Ellis R.Background Cichlid fishes have radiated into hundreds of species in the Great Lakes of Africa. Brightly colored males display on leks and vie to be chosen by females as mates. Strong discrimination by females causes differential male mating success, rapid evolution of male color patterns and, possibly, speciation. In addition to differences in color pattern, Lake Malawi cichlids also show some of the largest known shifts in visual sensitivity among closely related species. These shifts result from modulated expression of seven cone opsin genes. However, the mechanisms for this modulated expression are unknown. Results In this work, we ask whether these differences might result from changes in developmental patterning of cone opsin genes. To test this, we compared the developmental pattern of cone opsin gene expression of the Nile tilapia, Oreochromis niloticus, with that of several cichlid species from Lake Malawi. In tilapia, quantitative polymerase chain reaction showed that opsin gene expression changes dynamically from a larval gene set through a juvenile set to a final adult set. In contrast, Lake Malawi species showed one of two developmental patterns. In some species, the expressed gene set changes slowly, either retaining the larval pattern or progressing only from larval to juvenile gene sets (neoteny). In the other species, the same genes are expressed in both larvae and adults but correspond to the tilapia adult genes (direct development). Conclusion Differences in visual sensitivities among species of Lake Malawi cichlids arise through heterochronic shifts relative to the ontogenetic pattern of the tilapia outgroup. Heterochrony has previously been shown to be a powerful mechanism for change in morphological evolution. We found that altering developmental expression patterns is also an important mechanism for altering sensory systems. These resulting sensory shifts will have major impacts on visual communication and could help drive cichlid speciation.