Chemical and Biomolecular Engineering Research Works

Permanent URI for this collectionhttp://hdl.handle.net/1903/1656

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Salt-in-Salt Reinforced Carbonate Electrolyte for Li Metal Batteries
    (Wiley, 2022-08-30) Liu, Sufu; Zhang, Weiran; Wan, Hongli; Zhang, Jiaxun; Xu, Jijian; Rao, Jiancun; Deng, Tao; Hou, Singyuk; Nan, Bo; Wang, Chunsheng
    The instability of carbonate electrolyte with metallic Li greatly limits its application in high-voltage Li metal batteries. Here, a “salt-in-salt” strategy is applied to boost the LiNO3 solubility in the carbonate electrolyte with Mg(TFSI)2 carrier, which enables the inorganic-rich solid electrolyte interphase (SEI) for excellent Li metal anode performance and also maintains the cathode stability. In the designed electrolyte, both NO3− and PF6− anions participate in the Li+-solvent complexes, thus promoting the formation of inorganic-rich SEI. Our designed electrolyte has achieved a superior Li CE of 99.7 %, enabling the high-loading NCM811||Li (4.5 mAh cm−2) full cell with N/P ratio of 1.92 to achieve 84.6 % capacity retention after 200 cycles. The enhancement of LiNO3 solubility by divalent salts is universal, which will also inspire the electrolyte design for other metal batteries.
  • Item
    Formation of LiF-rich Cathode-Electrolyte Interphase by Electrolyte Reduction
    (Wiley, 2022-04-08) Bai, Panxing; Ji, Xiao; Zhang, Jiaxun; Zhang, Weiran; Hou, Singyuk; Su, Hai; Li, Mengjie; Deng, Tao; Cao, Longsheng; Liu, Sufu; He, Xinzi; Xu, Yunhua; Wang, Chunsheng
    The capacityof transitionmetal oxide cathodefor Li-ionbatteriescan be furtherenhancedby increas-ing the chargingpotential.However,these high voltagecathodessufferfrom fast capacitydecaybecausethelargevolumechangeof cathodebreaksthe activematerialsand cathode-electrolyteinterphase(CEI),resultingin electrolytepenetrationinto brokenactivematerialsand continuousside reactionsbetweencath-ode and electrolytes.Herein,a robustLiF-richCEI wasformedby potentiostaticreductionof fluorinatedelec-trolyteat a low potentialof 1.7 V. By takingLiCoO2asa modelcathode,we demonstratethat the LiF-richCEImaintainsthe structuralintegrityand suppresseselectro-lyte penetrationat a high cut-offpotentialof 4.6 V. TheLiCoO2with LiF-richCEI exhibiteda capacityof198 mAhg