Chemical and Biomolecular Engineering Research Works
Permanent URI for this collectionhttp://hdl.handle.net/1903/1656
Browse
3 results
Search Results
Item Salt-in-Salt Reinforced Carbonate Electrolyte for Li Metal Batteries(Wiley, 2022-08-30) Liu, Sufu; Zhang, Weiran; Wan, Hongli; Zhang, Jiaxun; Xu, Jijian; Rao, Jiancun; Deng, Tao; Hou, Singyuk; Nan, Bo; Wang, ChunshengThe instability of carbonate electrolyte with metallic Li greatly limits its application in high-voltage Li metal batteries. Here, a “salt-in-salt” strategy is applied to boost the LiNO3 solubility in the carbonate electrolyte with Mg(TFSI)2 carrier, which enables the inorganic-rich solid electrolyte interphase (SEI) for excellent Li metal anode performance and also maintains the cathode stability. In the designed electrolyte, both NO3− and PF6− anions participate in the Li+-solvent complexes, thus promoting the formation of inorganic-rich SEI. Our designed electrolyte has achieved a superior Li CE of 99.7 %, enabling the high-loading NCM811||Li (4.5 mAh cm−2) full cell with N/P ratio of 1.92 to achieve 84.6 % capacity retention after 200 cycles. The enhancement of LiNO3 solubility by divalent salts is universal, which will also inspire the electrolyte design for other metal batteries.Item Formation of LiF-rich Cathode-Electrolyte Interphase by Electrolyte Reduction(Wiley, 2022-04-08) Bai, Panxing; Ji, Xiao; Zhang, Jiaxun; Zhang, Weiran; Hou, Singyuk; Su, Hai; Li, Mengjie; Deng, Tao; Cao, Longsheng; Liu, Sufu; He, Xinzi; Xu, Yunhua; Wang, ChunshengThe capacityof transitionmetal oxide cathodefor Li-ionbatteriescan be furtherenhancedby increas-ing the chargingpotential.However,these high voltagecathodessufferfrom fast capacitydecaybecausethelargevolumechangeof cathodebreaksthe activematerialsand cathode-electrolyteinterphase(CEI),resultingin electrolytepenetrationinto brokenactivematerialsand continuousside reactionsbetweencath-ode and electrolytes.Herein,a robustLiF-richCEI wasformedby potentiostaticreductionof fluorinatedelec-trolyteat a low potentialof 1.7 V. By takingLiCoO2asa modelcathode,we demonstratethat the LiF-richCEImaintainsthe structuralintegrityand suppresseselectro-lyte penetrationat a high cut-offpotentialof 4.6 V. TheLiCoO2with LiF-richCEI exhibiteda capacityof198 mAhgItem Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery(AAAS, 2018-12-21) Fan, Xiulin; Ji, Xiao; Han, Fudong; Yue, Jie; Chen, Ji; Chen, Long; Deng, Tao; Jiang, Jianjun; Wang, ChunshengSolid-state electrolytes (SSEs) are receiving great interest because their high mechanical strength and transference number could potentially suppress Li dendrites and their high electrochemical stability allows the use of high-voltage cathodes, which enhances the energy density and safety of batteries. However, the much lower critical current density and easier Li dendrite propagation in SSEs than in nonaqueous liquid electrolytes hindered their possible applications. Herein, we successfully suppressed Li dendrite growth in SSEs by in situ forming an LiF-rich solid electrolyte interphase (SEI) between the SSEs and the Li metal. The LiF-rich SEI successfully suppresses the penetration of Li dendrites into SSEs, while the low electronic conductivity and the intrinsic electrochemical stability of LiF block side reactions between the SSEs and Li. The LiF-rich SEI enhances the room temperature critical current density of Li3PS4 to a record-high value of >2 mA cm−2. Moreover, the Li plating/stripping Coulombic efficiency was escalated from 88% of pristine Li3PS4 to more than 98% for LiF-coated Li3PS4. In situ formation of electronic insulating LiF-rich SEI provides an effective way to prevent Li dendrites in the SSEs, constituting a substantial leap toward the practical applications of next-generation high-energy solid-state Li metal batteries.