Plant Science & Landscape Architecture Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/2797

Browse

Search Results

Now showing 1 - 10 of 22
  • Item
    DESIGNING AN ACCESSIBLE AGRICULTURAL GARDEN: CONNECTING SOLIDARITY & AGROECOLOGY
    (2024) Boyle, Patrick Robert; Ruggeri, Deni; Plant Science and Landscape Architecture (PSLA); Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    This thesis explores the potential of agroecology as a transformative framework for guiding the transition of Bergamo's agricultural landscape toward sustainability, resilience, and community well-being. Grounded in the evolution of agroecology from farm-scale design to regional planning, the research investigates how this approach can integrate ecological methodologies and participatory action research in design to implement sustainable farming practices, rehabilitate landscapes, and cultivate solidarity-driven producer-consumer relationships. By emphasizing the interconnectedness of ecology, economy, and society, the study addresses whether agroecology can shape a district into a resilient landscape that enhances people's lives and promotes health and well-being.Through an interdisciplinary lens, the thesis also delves into the broader concept of landscape, highlighting its role in social well-being and advocating for the protection and responsible management of landscapes as a fundamental human right. It explores the principles of landscape democracy and solidarity, aiming to empower communities to reconnect with their environments and promote ecological restoration through collective action and ethical practices. Ultimately, the research strives to contribute to the discourse on agroecology and landscape planning, offering proposals and strategies for actionable change in regenerative and organic agricultural systems that prioritize the needs and values of local communities.
  • Item
    MAKING APPLES BLUSH: UNDERSTANDING HOW THE COMBINED USE OF REFLECTIVE GROUNDCOVERS AND PLANT GROWTH REGULATORS IMPACT RED SKIN COLORATION AND QUALITY OF ‘HONEYCRISP’ APPLES IN THE MID-ATLANTIC US
    (2024) Miah, Md Shipon; Farcuh, Macarena; Plant Science and Landscape Architecture (PSLA); Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Apples are among the most valuable fruits globally, with 'Honeycrisp' ranking as the top sales-producing cultivar in the US. However, challenges such as insufficient red skin coloration and increased preharvest fruit drop significantly diminish their market value. Reflective groundcovers have been reported to enhance apple skin coloration, while the application of the plant growth regulator AVG reduces fruit drop but may negatively impact skin coloration. Research on the impacts of these practices in mid-Atlantic US-grown apples remains limited. In this two years study, our aims were 1) to evaluate the effect of reflective groundcovers on solar radiation (PPFD, UV) distribution; 2) to assess the combined effect of reflective groundcovers and ethylene inhibitor (AVG) on preharvest fruit drop, ethylene production, red blush percentage, and overall fruit quality; 3) to investigate the combined effect of reflective groundcovers and ethylene inhibitor (AVG) on expression level of key anthocyanin and ethylene biosynthesis related genes; 4) to determine the combined effect of reflective groundcovers and ethylene inhibitors (AVG) in the accumulation of total anthocyanin. Apples underwent four treatment combinations of reflective groundcover (Extenday) and AVG (130 mg L−1). Our findings revealed that Extenday significantly enhanced skin coloration (>75% blush) through increased reflectance of PPFD and UV radiation, along with increased IEC, while also accelerating fruit maturity, i.e., overripening. In fact, Extenday-only treated fruit exhibited the highest upregulation of ethylene and anthocyanin biosynthetic-related genes, as well as total anthocyanins. Conversely, AVG notably reduced fruit drop and decreased IEC, delaying fruit maturity while significantly diminishing red coloration (30–48% blush). AVG treated fruit significantly suppressed the expression of key ethylene and anthocyanin biosynthetic structural and regulatory genes, as well as total anthocyanins. The combined application of Extenday and AVG synergistically decreased fruit drop while enhancing skin coloration (>50% blush), but without inducing overripening. This combination fine-tuned the transcript accumulation of ethylene and anthocyanin biosynthetic-related genes, as well as total anthocyanins, enabling 'Honeycrisp' fruit to exceed 50% blush, while moderately increasing IEC (compared to Extenday-only and control fruit), thus enhancing fruit economic value. Therefore, combining Extenday and AVG can boost the market value for 'Honeycrisp' apples in the mid-Atlantic US.
  • Thumbnail Image
    Item
    PRODUCTION RECOMMENDATIONS FOR INDUSTRIAL HEMP (CANNABIS SATIVA) FOR FIBER PRODUCTION IN MARYLAND: OPTIMIZING PLANTING DATE FOR FIBER YIELD, QUALITY, AND WEED MANAGEMENT
    (2024) Myers, Erin; Fiorellino, Nicole; Plant Science and Landscape Architecture (PSLA); Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Management recommendations, namely timing of planting and harvest, are well established for a wide range of agronomic crops, but this data is lacking for industrial fiber hemp (Cannabis sativa L.), especially in the Mid-Atlantic region. With the re-introduction of legal hemp production in the US in 2014, farmers faced many challenges to growing this crop, both policy and production challenges alike. As hemp production was illegal since World War II, there was virtually no applied agronomic research performed on hemp in that time. Moreover, there are no pre-emergence herbicides approved for weed management in industrial hemp production, and research is needed to determine which cultural practices can be utilized to manage weeds in this crop. This void of applied research performed on fiber hemp has left many Land-Grant universities and Extension personnel unable to provide basic production recommendations to farmers interested in growing this novel crop. To begin providing such recommendations to Maryland farmers interested in incorporating fiber hemp into their crop rotation, the objectives of this research were to 1) determine the effect of planting and harvest date on fiber hemp yield, plant characteristics, and fiber quality and 2) observe weed populations under a competition or germination prevention scenario in fiber hemp across the planting date spectrum. Based on this research, we believe fiber hemp can be successfully incorporated into Maryland crop rotations, as early planting and harvest of fiber hemp will result in quality fiber hemp, management of weeds through available cultural practices, and minimal disruption to other agronomic crops.
  • Thumbnail Image
    Item
    Dual water quality responses after more than 30 years of agricultural management practices in the rural headwaters of the Choptank River basin in the Chesapeake Bay watershed
    (2023) Silaphone, Keota; Fisher, Thomas R; Natural Resource Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Eutrophication is the water quality response to over-enrichment by nitrogen (N) and phosphorus (P) in fresh, estuarine, and coastal waters globally. Agricultural best management practices (BMPs) are the primary tool for controlling eutrophication in rural areas, particularly in the Chesapeake Bay watershed, where BMPs are vital to achieving TMDL goals. However, despite the application of BMPs, local water quality in the headwaters of the Choptank River, a major tributary of the Chesapeake Bay on the Delmarva Peninsula, has not improved. Thus, further investigation of agricultural BMP impacts on water quality in the Greensboro watershed is needed. My overarching research question is, “Why have N and P concentrations increased at the USGS Greensboro gauge if agricultural Best Management Practices (BMPs) have been implemented?” I applied statistical approaches to three linked, testable hypotheses to systematically evaluate agricultural BMPs and their impacts on nutrient (N and P) export from the Greensboro watershed. My first hypothesis was that agricultural BMPs have increased significantly in the Greensboro watershed. To test this hypothesis, I obtained publicly available modeling data via the Chesapeake Assessment Scenario Tool (CAST) and estimated the subsequent edge-of-stream N and P export. My findings indicated that the number of BMPs in the agricultural sector increased significantly between 1985 and 2021, supporting the hypothesis. Overall, modeled agricultural N and P export significantly decreased between 2010 and 2021 (p < 0.001). However, the modeled edge-of-stream agricultural nutrient export resulted in no significant change in N export and an increase of 3% in agricultural P export resulting from BMP implementation levels in 2021 compared to 2010. This study demonstrated the use of CAST to acquire reported BMP implementation levels and increased nutrient inputs into the Greensboro watershed between 1985 and 2021. The watershed nutrient inputs mirror the upward trends in N and P export captured by the USGS long-term monitoring station at Greensboro. With this improved access to BMP implementation and nutrient data, decision-makers can consider adaptive management measures to decrease nutrient export downstream. My second hypothesis was that agricultural BMPs have an adequate basis for estimating their capacity to reduce N export. To test this hypothesis, I conducted a meta-analysis on 689 cover crop N efficiencies reported in 18 empirical and modeling studies. The cover crop N efficiency was calculated as the ratio of an N interception by cover crop biomass or a reduction in soil or groundwater N divided by an N input, e.g., previous spring fertilizer or a previous soil or groundwater N concentration or flux. These variable approaches resulted in wide ranges in mean cover crop N efficiency (10-80%) due to empirical and modeling experimental approaches, varying methods, and parameters used to calculate efficiency. The modeling approach generally resulted in N efficiency values significantly higher than the empirical approach, as did the parallel control-treatment experiments compared to the sequential before-and-after implementation method. Because of these variables, there appears to be no standard methodology to report the effects of cover crops or standardized metadata describing the variables used in the N efficiency calculations. I suggest a standard methodology and metadata that should accompany future reports of cover crop N efficiencies to improve the modeled effects of BMPs on nutrient export. My third hypothesis was that three methods of estimating N and P concentrations and yields are in agreement and show a relationship to BMP implementation in the Greensboro watershed. To test this hypothesis, I compiled annual nutrient (N and P) datasets based on (1) USGS field measurements of concentrations and discharge, (2) USGS flow-normalized weighted regression based on time, discharge, and season (WRTDS) of concentrations and yields, and (3) CAST-modeled nutrient yields. Statistical analyses revealed time, discharge, agricultural BMPs, and animal waste management practice trends of the three methods. Results indicated that the USGS field measurements and WRTDS flow-normalization methods consistently showed an increase in N and P concentrations and yields. In contrast, all CAST-modeled regressions showed significantly decreasing nutrient concentrations and yields (p ≤ 0.05), which did not support the hypothesis that all three methods are in agreement. Despite CAST-modeled results decreasing with increasing BMPs, which supports the hypothesis that N and P concentrations and yields show a relationship with BMP implementation, USGS methods resulted in increasing nutrient concentrations and trends. These results indicated significant underestimates of modeled N and P export by CAST. I recommend using adjusted BMP efficiencies during cultural and structural BMP lifespans to improve model outputs. I also suggest two approaches to reflect the role of annual poultry manure applications: (1) model nutrient transport via artificial drainage ditches that interfere with natural nutrient flow pathways and exacerbate N and P transport, and (2) model the accumulation of soil-P and saturated soil-P, resulting in increases in dissolved P and particulate P in downstream surface waters. Agronomic recommendations include developing efficient manure recycling approaches within the local agricultural systems via nutrient management practices and concurrent research and development to support alternative uses of animal waste, including composting, bioenergy generation, granulating/pelletizing, and establishing a marketplace to support the sale of these products and to offset the costs of transporting manure from areas of manure surplus to manure deficit areas. This dissertation revealed that modeling studies overestimate cover crop N efficiencies in the United States Coastal Plain province and that CAST modeling is not in agreement with the USGS field measurements. CAST-modeled nutrient concentrations and yields decrease over time, indicating improvements in water quality. In contrast, USGS methods consistently show that nutrient concentrations and yields increase, indicating that BMPs are insufficient, inadequate, overwhelmed by nutrient inputs, or efficiencies are overestimated. Indeed, nutrient-reducing BMPs have increased between 1985 and 2021. With over 35 years of BMP implementation, measurable water quality response is expected. However, BMPs that relocate and apply higher amounts of manure annually have also increased with nutrient-reducing BMPs. Rising manure application rates combined with higher fertilizer application rates due to economic pressures on farmers to increase crop yields appeared to have overwhelmed implemented BMPs. Continued manure applications onto croplands in the Greensboro watershed suggest nutrient export will continue to rise; thus, reaching water quality goals is unlikely.
  • Thumbnail Image
    Item
    MANAGEMENT OPTIONS FOR FARMERS FACING SALTWATER INTRUSION ON THE EASTERN SHORE OF THE CHESAPEAKE BAY
    (2023) Schulenburg, Alison Nicole; Tully, Kate; Plant Science and Landscape Architecture (PSLA); Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Rising sea levels, storms, and perigean spring tides push saltwater into coastal agricultural fields. This phenomenon, known as saltwater intrusion, alters nutrient cycling and damages crop yields. As sea levels continue to rise, saltwater intrusion will only worsen, with devastating consequences to agroecosystems along the coast of the Chesapeake Bay. Researchers and farmers alike are looking for solutions to adapt to and mitigate the effects of saltwater intrusion. Landowners may respond by altering their management practices. Farmers may 1) adapt by planting a salt-tolerant crop, 2) attempt to remediate soils with trap crops, 3) restore native marsh grasses, or 4) abandon fields altogether. My project investigates the survival of different crops and plant treatments under saltwater-intruded conditions and the potential for these plants to survive and to remove excess nutrients (e.g. sodium and phosphorus) from the soil, with the overall goal to benefit both the farming community and water quality in the Chesapeake Bay. Results from this study will help inform new management practices to increase soil health and maintain crop yields. Finally, the goal of this work is to guide local best management practices and potential easement opportunities for landowners facing saltwater intrusion, and ultimately determine optimal strategies for climate resilience.
  • Thumbnail Image
    Item
    SPRAY STRATEGIES AND SELECTION FOR FUNGICIDE RESISTANCE: FENHEXAMID RESISTANCE IN BOTRYTIS CINEREA AS A CASE STUDY
    (2023) Boushell, Stephen Carl; Hu, Mengjun; Plant Science and Landscape Architecture (PSLA); Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Fungicide resistance is a limiting factor in sustainable crop production. Despite the wide adoption of general resistance management strategies by growers, the recent rate of resistance development in important fungal pathogens is concerning. In this study, Botrytis cinerea and the high-risk fungicide fenhexamid were used to determine the effects of fungicide dose, tank mixture, and application timing on resistance selection across varied frequencies of resistance via both detached fruit assays and greenhouse trials. The results showed that application of doses lower than the fungicide label dose, mixture with the low-risk fungicide captan, and application post-infection seem to be the most effective management strategies in our experimental settings. In addition, even a small resistant B. cinerea population can lead to a dramatic reduction of disease control efficacy. Our findings were largely consistent with the recent modeling studies which favored the use of the lowest possible fungicide dose for improved resistance management.
  • Thumbnail Image
    Item
    TEMPORAL DYNAMICS, ANTIMICROBIAL RESISTANCE AND PHYLOGENETIC RELATIONSHIPS OF BACTERIAL TAXA IN IRRIGATION WATER SOURCES AND RELEVANCE TO FOOD SAFETY
    (2021) Solaiman, Sultana; Micallef, Shirley SAM; Plant Science and Landscape Architecture (PSLA); Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    As climate change continues to stress freshwater resources, we have a pressing need to identify alternative (nontraditional) sources of microbially safe water for irrigation of fresh produce. Unfortunately, open water sources are often contaminated with many known human pathogens such as E. coli, Salmonella and Listeria and unknown/understudied pathogens such as Aeromonas that are associated with foodborne outbreaks. To facilitate the adoption of microbiologically safe irrigation water sources, a comprehensive study on the prevalence and virulence potential of human pathogens and their transferability to fruit and fresh produce vegetables was conducted. The effect of irrigation water types on crop surface microbial community structure, presence of virulence factors and antimicrobial resistance were investigated to evaluate the potential of transfer of pathogenic and antimicrobial resistant bacteria in humans. Initially, the prevalence of indicator bacteria was determined using culture methods and then microbiological water quality profiles (MWQP) was created to identify water sources that complied with the U.S Food Safety Modernization Act water standards. Next, using culture and molecular methods, investigation of the antimicrobial resistance profile of one known foodborne pathogen Escherichia coli retrieved over a two-year period was done. E. coli resistance against widely prescribed antibiotics, extended spectrum β-lactams, was determined phenotypically and genetically. The diversity, distribution and potential for pathogenesis of one understudied pathogen, Aeromonas, prevalent in a variety of typical or potential irrigation water sources and collected over a one-year period was investigated. The study revealed spatial and temporal patterns in species richness, evenness, virulence gene carriage and attachment behaviors on both biotic and abiotic surfaces, of this bacterial taxon. Finally, the effect of using highly treated reclaimed water and pond water on lettuce surface microbiomes was investigated. The study provided an integrated assessment of the shifts in microbial community that result from using different irrigation water sources for irrigation of lettuce. Understanding the ecology of lettuce associated microbiota can be useful to infer risks of transfer and establishment potential of possible pathogenic strains from irrigation water sources to minimally processed raw consumed fresh produce crops.
  • Thumbnail Image
    Item
    CUCURBIT DISEASE MANAGEMENT WITH REDUCED CHLOROTHALONIL AND IMPROVED UNDERSTANDING OF PSEUDOPERONOSPORA CUBENSIS POPULATION DYNAMICS
    (2020) Jones, Jake Gardner; Everts, Kathryne L; Plant Science and Landscape Architecture (PSLA); Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Research has linked chlorothalonil exposure to declines in pollinator health due to an increased likelihood of Nosema ceranae infection, altered gut microbial community, and a reduction in colony fitness and survival of honey bees (Apis mellifera). Therefore, a reduction in use of chlorothalonil, a large component of cucurbit disease management, may be needed. Without chlorothalonil, a widely used, broad-spectrum fungicide, the fungal and oomycete pathogens in cucurbit cropping systems can more quickly evolve resistance to targeted fungicides due to a limited number of efficacious modes of action and frequent sprays. Pseudoperonospora cubensis, the causal agent of cucurbit downy mildew, for example, has a short life cycle, experiences repeated applications of fungicides, and has a wide host range making it a high risk for fungicide resistance development. Our research focused on the development of an alternative fungicide spray program in melons to reduce the use of chlorothalonil, identifying the fungicide insensitivities of local P. cubensis populations and determining the efficacy of fungicides used to manage cucurbit downy mildew, and investigating the clade-host relationship and formation of oospores in regional P. cubensis samples. Efficacy on two important diseases in melon, powdery mildew and gummy stem blight, can be largely maintained without chlorothalonil but anthracnose control was not adequate without the inclusion of chlorothalonil. Currently, there are a number of highly effective targeted fungicides available to growers for management of cucurbit downy mildew including oxathiapiprolin, zoxamide + chlorothalonil, chlorothalonil, and cyazofamid. Our research shows evidence of P. cubensis clade-host associations, with clade 1 preferentially infecting acorn and summer squash (Cucurbita pepo), butternut squash (Cucurbita moschata), and watermelon (Citrullus lanatus), while clade 2 preferentially infects cucumber (Cucumis sativus). Melons (Cucumis melo) and pumpkin (Cucurbita maxima) are hosts to both clade 1 and clade 2 P. cubensis. Using these findings, producers can choose the fungicide that most appropriately targets the more virulent clade 2 or less virulent clade 1 infections.
  • Thumbnail Image
    Item
    MODELLING DECOMPOSITION AND NITROGEN RELEASE FROM SURAFCE COVER CROP RESIDUES IN NO-TILL SYSTEMS IN THE MID-ATLANTIC AND SOUTHEASTERN US
    (2020) Thapa, Resham; Tully, Katherine L.; Mirsky, Steven B.; Plant Science and Landscape Architecture (PSLA); Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    In the mid-Atlantic and Southeastern US regions, cover crops (CCs) are planted during the winter fallow periods or between cash crops to provide living roots and to cover soil for extended time periods. Cover crops can provide a suite of agroecosystem services to cropping systems including soil and water conservation, weed suppression, and nitrogen (N) cycling. After CCs are terminated, the rate of residue decomposition determines both N availability and the longevity of residue cover in conservation tillage (reduced- and no-till) systems. Accurate predictions of plant-available N from decomposing CCs are needed to improve N fertilizer recommendations in order to reduce environmental losses of N while meeting cash crop N needs. The objective of this work is to improve our understanding of the factors controlling CC residue decomposition in conservation tillage systems at varying temporal (diurnal to seasonal) and spatial (laboratory to regional) scales. At a diurnal scale, the moisture (θg)/water potential (ψresidue) and temperature in the surface CC residue layers fluctuated more dramatically and dynamically than the underlying soils. Decomposition of surface CC residues also showed distinct diurnal patterns that were closely related to diurnal variations in residue θg or ψresidue. In a controlled microcosm experiment, the effect of residue location on C and N mineralization during repeated dry-wet cycles were also primarily explained by differences in residue water dynamics than by differences in soil-residue contact between the surface and incorporated residues. At a regional scale, the combination of residue quality and climatic variables explained the majority of the variations in residue decomposition rates, i.e. k-values. I found faster decomposition of surface CC residues in humid environments and in site-years with more frequent rain events. The k-values decreased with increasing biomass, C:N, residue holo-cellulose concentrations, and lignin:N, but increased with increasing residue carbohydrate concentrations. Mathematical equations were developed and integrated into the existing CERES-N sub-model to adjust k-values based on residue environment. Once such models are well-calibrated and well-validated, they will be used to make evidence-based management recommendations to farmers. Thus, this research helps to optimize provisioning of agroecosystem services in CC-based conservation tillage crop production systems.
  • Thumbnail Image
    Item
    Getting Legume Cover Crops to Work in Mid-Atlantic Crop Rotations
    (2020) Peterson, Cara; Tully, Katherine L; Plant Science and Landscape Architecture (PSLA); Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    In the mid-Atlantic United States, legume cover crop adoption is limited by the shortened establishment window after double-crop soybean (Glycine max (L.) Merr.) harvest. Interseeding legume cover crops into wide-row (76 cm) double-crop soybean presents an opportunity to supplement inorganic nitrogen (N) fertilizer in the subsequent corn (Zea mays L.) crop. We conducted field trials in Maryland and Delaware in which mixtures of cereal rye (Secale cereale L.) + hairy vetch (Vicia villosa Roth), crimson clover (Trifolium incarnatum L.), red clover (Trifolium pratense L.), or winter pea (Pisum sativum var. arvense (L.) Poir) were interseeded into double-crop soybean. We then examined the N contributions of the cover crop mixtures in combination with sidedress applications of inorganic N fertilizer on corn yields in Maryland in 2018 and 2019. This research demonstrated that interseeding cover crops into double-crop soybean is a potential strategy for increasing regional adoption of legume cover crops.