Plant Science & Landscape Architecture Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/2797

Browse

Search Results

Now showing 1 - 10 of 17
  • Thumbnail Image
    Item
    Weed Suppression By Forage Radish Winter Cover Crops
    (2010) Lawley, Yvonne Elizabeth; Weil, Ray R; Plant Science and Landscape Architecture (PSLA); Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Forage radish (Raphanus sativus L. var. longipinnatus) is a new winter cover crop in the Mid-Atlantic region. This study had three objectives: 1) to characterize the repeatability, amount, and duration of weed suppression during and after a fall-planted forage radish cover crop 2) to quantify its subsequent effect on direct seeded corn, and 3) to identify the mechanisms of this weed suppression. Forage radish cover crops were grown in ten site-years and followed by a corn crop in seven site-years in the coastal plain of Maryland. Forage radish was compared to rye (Secale cereale L.), oat (Avena sativa L.), and no cover crop treatments. Early and typical corn planting dates along with contrasting herbicide management strategies were compared over four site-years. Forage radish did not reduce population or yield in subsequent corn crops. Forage radish provided complete suppression of winter annual weeds in the fall and early spring but the suppression did not persist into the following cropping season. When forage radish cover crops were used in place of pre-plant burn down herbicide treatments to control weeds in early planted corn, some weeds were present at the time of corn emergence but corn yields were not reduced if emerged weeds were controlled with a postemergence herbicide. Controlled environment bioassays involving cover crop amended soil, aqueous plant extracts, and aqueous soil extracts along with a field experiment involving planted weed seeds did not provide evidence of allelopathy. In a residue moving experiment, no difference in spring weed suppression was observed if forage radish residues were removed prior to killing frost in November or left in place to decompose in three of four site-years. These results were supported by planting date experiments where fall ground cover and spring weed suppression was greatest for earlier planting dates of forage radish cover crops. Thus, rapid and competitive fall growth, rather than allelopathy, is the most likely mechanism of weed suppression by forage radish winter cover crop. Strategies to utilize the weed suppression of forage radish cover crops should focus on fall weed suppression and the early spring pre-plant window of weed control.
  • Thumbnail Image
    Item
    Alleviation of Soil Compaction by Brassica Cover Crops
    (2009) Chen, Guihua; Weil, Ray R; Plant Science and Landscape Architecture (PSLA); Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Soil compaction is a worldwide problem in modern agriculture associated with overuse of heavy machinery and intensification of cropping systems. Though tillage is traditionally used to alleviate compaction effect, increasing concerns about environmental impacts of tillage have led to interest in conservational tillage systems and incorporation of cover crops into crop rotations. Previous study showed soybean (Glycine Max L.) roots grew through a plowpan soil using channels left by canola (Brassica napus) cover crop roots, a process termed "biodrilling" to alleviate compaction effect. However, this study did not provide any quantitative data to support the observational conclusion. We studied "biodrilling" abilities of three cover crops and the effects of "biodrilling" on corn (Zea mays)/soybean growth by conducting three experiments. The first two experiments included three surface horizon compaction treatments (high, medium and no compaction), four cover crops [FR (forage radish: Raphanus sativus var. longipinnatus, cultivar `Daikon') and rape (rapeseed: Brassica napus, cultivar `Essex') (tap-rooted species in the Brassica family), rye (cereal rye: Secale cereale L., cultivar `Wheeler') (fibrous-rooted species) and NC (no cover crop)] in Exp. 1, and three cover crops (FR, rape and NC) in Exp. 2. The third experiment was conducted on field with a legacy plowpan (subsoil compaction) using FR, rye and NC cover crops. Roots of FR were least inhibited by compaction, while rye roots were severely arrested by compaction. The order of "biodrilling" ability was FR > rape > rye. Soil bulk density, strength and least limiting water range were controlled by compaction treatments. Soil air permeability was greatly reduced by compaction. Air permeability was greater in rape/FR treatments than in rye/NC treatments under high/medium compaction. Corn/soybean root penetrations, subsoil water uptake in the compacted soils were enhanced by FR/rape treatments but not by rye/NC treatments. Compaction decreased corn yield only in Exp. 2 where soil sand fraction was greater. The yield of corn was greater in three cover crop treatments than in NC control. In terms of "biodrilling", Brassica cover crops (FR and rape) were more effective than rye cover crop, would alleviate effects of soil compaction on plant growth in no-till farming systems.
  • Thumbnail Image
    Item
    THATCH AND SOIL PESTICIDE DEGRADATION AND MICROBIAL ACTIVITY AS INFLUENCED BY TURF CULTIVATION PRACTICES
    (2009) MU, YUSONG; Carroll, Mark J; Plant Science and Landscape Architecture (PSLA); Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Pesticide degradation in turf is complicated by presence of an organic matter enriched layer called thatch. It is not well understood how the extensive pesticide sorption capacity of thatch may affect the aerobic degradation of pesticides in thatch. Hollow tine cultivation and vertical mowing are two commonly used cultivation practices used to control thatch. Two studies were conducted to determine how these two cultural practices may affect microbial activity and pesticide degradation within thatch and soil. Hollow tine cultivation briefly enhanced microbial activity within thatch while vertical mowing had no consistent effect on thatch or soil microbial activity. Neither cultivation practice consistently altered the aerobic degradation of 2,4-D, flutolanil or chlorpyrifos. Thatch and soil aerobic degradation constants obtained for flutolanil and chlorpyrifos supported the hypothesis that strongly adsorbed pesticides are shielded from microbial populations that degrade pesticides within thatch.
  • Thumbnail Image
    Item
    Forage Radish Cover Crop Effects on Mycorrhizal Colonization and Soil Test Phosphorus
    (2009) White, Charles Macaulay; Weil, Ray R; Plant Science and Landscape Architecture (PSLA); Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Forage radish (Raphanus sativus L. var. longipinnatus) and cereal rye (Secale cereale L.) cover crops were examined for their effects on arbuscular mycorrhizal colonization and P acquisition of a subsequent corn (Zea mays L.) silage crop. Soil test P following these cover crops was also measured in bulk soil collected at three depths in the surface soil and in soil sampled within 3 cm of forage radish tap root holes. Forage radish never decreased mycorrhizal colonization and rye sometimes increased colonization of the subsequent crop compared to growing no cover crop. The extent of colonization of corn roots by arbuscular mycorrhizal fungi was positively correlated with corn shoot tissue P concentrations. Slight vertical soil test P stratification in the bulk soil occurred following both forage radish and rye cover crops at some sites. A large increase in soil test P occurred within 3 cm of forage radish tap root holes.
  • Thumbnail Image
    Item
    Association Analysis in Soybean
    (2008-08-29) Hwang, Eun-Young; COSTA, JOSE; Plant Science and Landscape Architecture (PSLA); Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Association analysis is a new approach to identify the location of gene(s)/allele(s) of interest. There are a number of factors determining the feasibility of whole-genome association analysis which include the level of linkage disequilibrium (LD) and the magnitude of population structure in a population. The goal of this study was to evaluate the success of whole-genome association analysis in soybean germplasm accessions using DNA markers across the whole genome. Firstly, the extent of LD and the presence of population structure were estimated. Secondly, whole-genome association analysis was performed to detect the location of the allele/gene controlling flower color, pubescence color, and seed protein quantitative trait loci (QTLs) in 319 soybean [Glycine max (L.) Merr.] germplasm accessions. The soybean germplasm accessions had a relatively low level of LD which declined very rapidly to 0.8 in less than 4 Kbp as indicated by r2 as well as highly diverse population structure. Despite the low LD and the presence of high population structure, whole-genome case-control analysis successfully detected the 65 bp insertion in the GmF3'5'H (GenBank acc. AY117551) gene controlling purple vs. white flower color, as well as a single base deletion in the F3'H (GenBank acc. AB191404) gene controlling tawny vs<\em>. gray pubescence color. However, there were 28 gray pubescence lines that did not contain the deletion suggesting that there is a second mutation determining the pubescence color alteration. In the case of seed protein QTL, whole-genome regression analysis detected one of four previously reported seed protein QTLs which reside on linkage group (LG) E and a new seed protein QTL on LG K. The detection of three other previously reported seed protein QTLs on LGs A1, I and M was not successful. It is unclear why association analysis was not successful in the detection of the three previously reported QTLs. However, a number of reasons including incomplete adjustment for population structure, lack of statistical power, an inadequate number of genetic markers in light of the low level of LD, and the power of association analysis to detect alleles with relatively modest genetic effects are suggested as possible reasons.
  • Thumbnail Image
    Item
    Winter annual rye cover crops in no-till grain crop rotations: impacts on soil physical properties and organic matter
    (2007-07-31) Bilek, Meredith; Coale, Frank J; Plant Science and Landscape Architecture (PSLA); Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Winter annual cover cropping (WCC) is a common management practice subsidized by Maryland to protect water and soil quality. The affect of long-term incorporation of WCC on soil physical properties (SPP) is not well established. We hypothesized by increasing organic inputs WCC would improve SPP. To evaluate the effect of WCC and wheel traffic (WT) on SPP, we studied two long term rotations (corn/rye and corn/fallow) at two locations on the Coastal Plain (CP) and one on the Piedmont. WCC improved SPP, but only during the winter at the CP. High levels of WT compacted soil in both rotations. WCC and wheel traffic had no effect on SPP or organic matter at the Piedmont. We conclude, only during the winter did WCC improve SPP; however, due to the drastic annual changes, we hypothesize this improvement is due to soil disturbance caused by the grain drill planting the rye.
  • Thumbnail Image
    Item
    Soil Nematode Communities as Influenced by Cover Crops, with a Focus on Brassicaceae
    (2007-06-11) Gruver, Lisa Stocking; Weil, Ray R.; Plant Science and Landscape Architecture (PSLA); Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The effect of brassicaceous cover crops (Brassica juncea/Sinapis alba, B. napus, and Raphanus sativus) on plant-parasitic and free-living soil nematode communities, in grain agroecosystems, was evaluated in three experiments, at two sites in Maryland. Brassicaceous cover crops alone did not suppress plant-parasitic nematodes, however when combined with rye (Secale cereale) or clover (Trifolium incarnatum), juvenile (J2) Heterodera glycines populations were lower in June, soybean yields were higher, or free-living nematode abundance was higher. Indices of free-living nematode community structure suggested that winter-kill of N-rich radishes activated the bacterivore community in early spring resulting in high populations of bacterivore dauer larvae and high community structure by summer. In contrast, nematode communities in spring-terminated rapeseed and rye plots had high abundances of fungivore nematodes and a plant associate/fungal feeder, Coslenchus. Brassicaceous cover crops in Maryland grain rotations may be more useful for managing soil ecology than for biofumigation of plant-parasitic nematodes.
  • Thumbnail Image
    Item
    Nitrogen Mineralization from Brassica Cover Crops
    (2006-07-27) Kremen, Amy; Weil, Ray; Plant Science and Landscape Architecture (PSLA); Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The potential of forage radish (Raphanus sativus L.), rape (Brassica napus L.), and rye (Secale cereale L.) cover crops to capture residual nitrogen and then provide early season N to subsequent main crops via mineralization from their residues was compared. At four field experiments established in Maryland (2003-2005), N uptake by radish and rape equaled or exceeded that by rye. No differences in soil inorganic N due to cover crop type were observed during spring 2004. In spring 2005, greatest N release from forage radish residues (March-May) was followed by that from rape residues (May-June). Brassica decay significantly increased growth of immature corn and soybean plants. In a 48-day incubation study comparing N mineralization in fine and coarse textured soils from Brassica and rye root or shoot residues, N mineralization was greatest from forage radish and rape shoots. Compared with rye, the Brassica cover crops showed environmental and agronomic promise.
  • Thumbnail Image
    Item
    DOLLAR SPOT AND GRAY LEAF SPOT SEVERITY AS INFLUENCED BY IRRIGATION PRACTICE AND PLANT PROTECTION MATERIALS
    (2005-11-23) McDonald, Steven James; Dernoeden, Peter H; Plant Science and Landscape Architecture (PSLA); Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Agrostis stolonifera and Lolium perenne are widely used turfgrass species grown on golf fairways, however, they are susceptible to dollar spot (Sclerotinia homoeocarpa) and gray leaf spot (Pyricularia grisea) diseases, respectively. Two field studies were conducted to assess: 1) the influence of two irrigation regimes and seven chemical treatments on dollar spot and gray leaf spot severity; and 2) the effects of two spray volumes (468 and 1020 L water ha-1), two fungicides (chlorothalonil and propiconazole) and three application timings (dew present or displaced and dry canopy) on dollar spot control. Dollar spot was more severe in A. stolonifera subjected to infrequent irrigation; whereas, gray leaf spot was more severe in frequently irrigated L. perenne. The plant growth regulator and wetting agent evaluated suppressed dollar spot, but they had no effect on gray leaf spot. Chlorothalonil was most effective when applied to a dry canopy in 468 L water ha-1.
  • Thumbnail Image
    Item
    Double-Cropped Soybean Response to Various Wheat Stubble Managements
    (2005-08-12) Pearce, Justin Tyler; Kratochvil, Robert J; Plant Science and Landscape Architecture (PSLA); Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Varying responses to wheat (Triticum aestivum L.) stubble management preceding double-crop soybean [Glycine max (L.) Merr.] have been reported; however, little work has been done in the Mid-Atlantic region of the United States. The objectives of this study were to observe the effects of wheat stubble management (WSM) on physiological growth and yield characteristics for double-cropped glyphosate-resistant soybean, soil moisture retention and soil surface shading, monitor weed response characteristics, and to perform a simple economic analysis comparing the four WSM treatments. Soybean plant height, lowest pod height, and soil surface shading were greater in the 30 cm stubble treatment; however, there was no plant lodging or yield response to WSM, and soil moisture contents were unaffected due to the ample rainfall that was received during 2003 and 2004. As a result, 15 cm stubble with the straw removed via baling was found to be the most economically profitable treatment.