Plant Science & Landscape Architecture Theses and Dissertations
Permanent URI for this collectionhttp://hdl.handle.net/1903/2797
Browse
53 results
Search Results
Item Establishing Native Grasses Along Maryland Roadways(2000) Adamson, Nancy Lee; Turner, Thomas R.; Plant Science and Landscape Architecture (PSLA); Digital Repository at the University of Maryland; University of Maryland (College Park, Md)The use of native grasses and other meadow species in roadside rights-of-way is perceived as environmentally and economically beneficial. There is a need for more information about successful establishment procedures appropriate for the mid-Atlantic region. This study examined the use of companion species and weed control treatments for native grass establishment in three distinct regions of Maryland. A mixture of eight perennial native grasses planted included big bluestem (Andropogon gerordii Vitman), bluejoint (Colomogrostis conodensis (Michx.) Beauv.), broomsedge (Andropogon virginicus L.), deertongue (Dichonthelium clondestinum (L.) Gould), eastern gamagrass (Tripsocum doctyloides (L.) L.), indian grass (Sorghostrum nutons (L.) Nash), little bluestem (Schizochyrium scoporium (Michx.) Nash), and switchgrass (Ponicum virgotum L.). A variety of annual and perennial non-native and native grasses and two legumes planted as companion species, as well as various weed control treatments (mowing and the herbicides imazapic ((±)-2-[4,5-dihydro-4-methyl-4-( I -methylethyl)-5-oxo- I H-imidazol-2-yl]-5-methyl-3 pyridinecarboxylic acid) and triclopyr ([(3,5,6-trichloro-2-pyridinyl)Oxy] acetic acid) with 2,4-D (2,4- dichlorophenoxyacetic acid) were tested for their utility in aiding establishment of the native mixture. Companion and weed control treatments had variable effects, depending on individual species, site and climatic conditions.Item CALIBRATING CAPACITANCE SENSORS TO ESTIMATE WATER CONTENT, MATRIC POTENTIAL, AND ELECTRICAL CONDUCTIVITY IN SOILLESS SUBSTRATES(2009) Arguedas Rodriguez, Felix Ruben; Lea-Cox, John D; Plant Science and Landscape Architecture (PSLA); Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The nursery and greenhouse industry requires precise methods to schedule irrigations, since current practices are subjective and contribute to water and nutrient runoff. Capacitance sensors were calibrated to precisely estimate substrate water content, matric potential, and pore water electrical conductivity (EC) in five soilless substrates. Regression coefficients (R2) ranged from 0.29 - 0.88 and 0.16 - 0.79 for water content in 5-cm and 20-cm column heights; matric potential R2 ranged from 0.10 - 0.98 and 0.79 - 0.98, respectively. Pore water EC calibrations were investigated, contrasting two sensor types and two prediction models. Results were applied to an empirical greenhouse dataset. Better precision and accuracy were achieved with ECH2O-TE sensor and Rhoades model. Capacitance sensors provide precise estimates of plant-available water in most soilless substrates, while pore water EC accuracy and precision depends on the sensor-model combination. These results will enable growers to precisely schedule irrigations based on water content and pore water EC.Item IN VITRO INDUCTION OF POLYPLOIDY IN CERCIS YUNNANENSIS HU ET CHENG(2009) Nadler, Joshua Daniel; Coleman, Gary D; Plant Science and Landscape Architecture (PSLA); Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Methods for in vitro induction of polyploid Cercis yunnanensis Hu et Cheng using oryzalin were developed and evaluated. Methods included treating either shoot or callus tissue for different exposure durations with either an aqueous solution of 150 micromolar oryzalin or the addition of oryzalin directly to solid media. Polyploid nuclei were determined by flow cytometry for all oryzalin treatments. Although the results indicate that most tissues measured were likely chimeras with respect to DNA content. Results indicate that treating shoot tissue with an aqueous solution of oryzalin for 12 to 96 hours produced tetraploid plants irrespective of the type of shoot explant treated. An unstable octaploid was formed from the treatment of a pre-cultured lateral shoot in an aqueous solution of oryzalin for 96 hours. In contrast shoots cultured on the solidified media failed to produce polyploid plants and there were no statistical differences between callus treatments regarding polyploid induction.Item Alleviation of Soil Compaction by Brassica Cover Crops(2009) Chen, Guihua; Weil, Ray R; Plant Science and Landscape Architecture (PSLA); Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Soil compaction is a worldwide problem in modern agriculture associated with overuse of heavy machinery and intensification of cropping systems. Though tillage is traditionally used to alleviate compaction effect, increasing concerns about environmental impacts of tillage have led to interest in conservational tillage systems and incorporation of cover crops into crop rotations. Previous study showed soybean (Glycine Max L.) roots grew through a plowpan soil using channels left by canola (Brassica napus) cover crop roots, a process termed "biodrilling" to alleviate compaction effect. However, this study did not provide any quantitative data to support the observational conclusion. We studied "biodrilling" abilities of three cover crops and the effects of "biodrilling" on corn (Zea mays)/soybean growth by conducting three experiments. The first two experiments included three surface horizon compaction treatments (high, medium and no compaction), four cover crops [FR (forage radish: Raphanus sativus var. longipinnatus, cultivar `Daikon') and rape (rapeseed: Brassica napus, cultivar `Essex') (tap-rooted species in the Brassica family), rye (cereal rye: Secale cereale L., cultivar `Wheeler') (fibrous-rooted species) and NC (no cover crop)] in Exp. 1, and three cover crops (FR, rape and NC) in Exp. 2. The third experiment was conducted on field with a legacy plowpan (subsoil compaction) using FR, rye and NC cover crops. Roots of FR were least inhibited by compaction, while rye roots were severely arrested by compaction. The order of "biodrilling" ability was FR > rape > rye. Soil bulk density, strength and least limiting water range were controlled by compaction treatments. Soil air permeability was greatly reduced by compaction. Air permeability was greater in rape/FR treatments than in rye/NC treatments under high/medium compaction. Corn/soybean root penetrations, subsoil water uptake in the compacted soils were enhanced by FR/rape treatments but not by rye/NC treatments. Compaction decreased corn yield only in Exp. 2 where soil sand fraction was greater. The yield of corn was greater in three cover crop treatments than in NC control. In terms of "biodrilling", Brassica cover crops (FR and rape) were more effective than rye cover crop, would alleviate effects of soil compaction on plant growth in no-till farming systems.Item THATCH AND SOIL PESTICIDE DEGRADATION AND MICROBIAL ACTIVITY AS INFLUENCED BY TURF CULTIVATION PRACTICES(2009) MU, YUSONG; Carroll, Mark J; Plant Science and Landscape Architecture (PSLA); Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Pesticide degradation in turf is complicated by presence of an organic matter enriched layer called thatch. It is not well understood how the extensive pesticide sorption capacity of thatch may affect the aerobic degradation of pesticides in thatch. Hollow tine cultivation and vertical mowing are two commonly used cultivation practices used to control thatch. Two studies were conducted to determine how these two cultural practices may affect microbial activity and pesticide degradation within thatch and soil. Hollow tine cultivation briefly enhanced microbial activity within thatch while vertical mowing had no consistent effect on thatch or soil microbial activity. Neither cultivation practice consistently altered the aerobic degradation of 2,4-D, flutolanil or chlorpyrifos. Thatch and soil aerobic degradation constants obtained for flutolanil and chlorpyrifos supported the hypothesis that strongly adsorbed pesticides are shielded from microbial populations that degrade pesticides within thatch.Item THE INFLUENCE OF LAND-USE, ENVIRONMENT, AND SOCIOECONOMIC FACTORS ON TREE SPECIES DISTRIBUTION IN BALTIMORE, MARYLAND.(2009) Mead, Kimberley Ellen; Sullivan, Joseph H.; Plant Science and Landscape Architecture (PSLA); Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)With the exponential growth in human population and rapid increase in global urbanization, understanding changes in community dynamics and structure in human dominated landscapes is essential, yet, rarely studied. To determine what factors account for tree species composition and distribution in an urban setting, data from the 1999 UFORE Model vegetation survey of Baltimore, Maryland was analyzed. There was a diverse arboreal population found, comprised primarily of species native to the area. Detrended correspondence analysis did not show a clear pattern of species assemblages based on land-use, possibly indicating a homogenization of conditions across the urban environment. In canonical correspondence analyses, species distribution could not be explained by socioeconomic factors, however, there was a significant relationship of tree species assemblages and the physical environment, specifically with percent impervious surface cover. The amount of variance accounted for was small indicating that other factors may be involved in determining tree species distribution.Item Forage Radish Cover Crop Effects on Mycorrhizal Colonization and Soil Test Phosphorus(2009) White, Charles Macaulay; Weil, Ray R; Plant Science and Landscape Architecture (PSLA); Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Forage radish (Raphanus sativus L. var. longipinnatus) and cereal rye (Secale cereale L.) cover crops were examined for their effects on arbuscular mycorrhizal colonization and P acquisition of a subsequent corn (Zea mays L.) silage crop. Soil test P following these cover crops was also measured in bulk soil collected at three depths in the surface soil and in soil sampled within 3 cm of forage radish tap root holes. Forage radish never decreased mycorrhizal colonization and rye sometimes increased colonization of the subsequent crop compared to growing no cover crop. The extent of colonization of corn roots by arbuscular mycorrhizal fungi was positively correlated with corn shoot tissue P concentrations. Slight vertical soil test P stratification in the bulk soil occurred following both forage radish and rye cover crops at some sites. A large increase in soil test P occurred within 3 cm of forage radish tap root holes.Item Factors Affecting Fungicide Performance when Targeting Dollar Spot Disease in Creeping Bentgrass(2009) Pigati, Ray L.; Dernoeden, Peter H; Plant Science and Landscape Architecture (PSLA); Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Creeping bentgrass (Agrostis stolonifera) is commonly grown on golf course fairways and dollar spot (Sclerotinia homoeocarpa) is perhaps the most chronically severe disease of bentgrass. Field studies were conducted to: a) determine the influence of simulated rainfall and two mowing timings (AM and PM) on the performance of four fungicides, and b) to assess the effects of two fungicide spray volumes (468 and 935 L water ha-1) and application timings (AM and PM) on dollar spot control in creeping bentgrass. Fungicide effectiveness generally was reduced by simulated rain imposed about 30 minutes after application. Boscalid and chlorothalonil were most and least rain-safe; respectively, and propiconazole and iprodione were intermediate in rain-safeness. Fungicide performance was improved by mowing in the AM prior to fungicide application. A tank-mix of chlorothalonil + propiconazole was unaffected by spray volume or application timing, but the performance of chlorothalonil and propiconazole applied separately was inconclusive.Item HYDROMORPHOLOGY OF ANOMALOUS BRIGHT LOAMY SOILS ON THE MID-ATLANTIC COASTAL PLAIN(2009) Zurheide, Philip Klaus; Rabenhorst, Martin C; Plant Science and Landscape Architecture (PSLA); Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Some loamy textured soils along the Mid-Atlantic coastal plain undergo extended periods of saturation or ponding, yet lack the hydromorphology that identifies them as hydric by any of the currently approved Field Indicators of Hydric Soils (FI). Termed Anomalous Bright Loamy Soils (ABLS), these were identified at four research sites on the Delmarva Peninsula. The hydrologic and biogeochemical status of these soils was monitored for three years along a hydrosequence at each site. A series of field and lab experiments were run to investigate the possible causes for the ABLS-phenomenon. The most likely cause is a combination of low hydrologic gradient coupled with the length of time since saturation. Using observed morphology, a newly developed Field Indicator successfully discriminated between five hydric soils that lacked an approved indicator and those that were not hydric. This indicator has now been approved as an official FI of Hydric Soils (F20).Item Microbial Ecology and Horticultural Sustainability of Organically and Conventionally Managed Apples(2008) Ottesen, Andrea; Walsh, Christopher S; Plant Science and Landscape Architecture (PSLA); Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Objectives: Organically and conventionally managed apple trees (Malus domestica Borkh) were evaluated for three growing seasons (2005-2007) to examine the impact of organic and conventional pesticide applications on the microbial ecology of phyllosphere and soil microflora. An important objective was to establish if organic or conventional selection pressures contribute to an increased presence of enteric pathogens in phyllosphere microflora. The horticultural and economic sustainability of the organic crop was also compared to the conventional crop with regard to fruit yield and input costs. Methods: Microbial populations from phyllosphere and soil environments of apple trees were evaluated using clone libraries of 16S rRNA gene fragments. Clones were sequenced and software was used to assess diversity indices, identify shared similarities and compute statistical differences between communities. These measurements were subsequently used to examine treatment effects on the microbial libraries. Phyllosphere Results: Eight bacterial phyla and 14 classes were found in this environment. A statistically significant difference between organically and conventionally managed phyllosphere bacterial microbial communities was observed at four of six sampling time points. Unique phylotypes were found associated with each management treatment but no increased human health risk could be associated with either treatment with regard to enteric pathogens. Soil Results: Seventeen bacterial phyla spanning twenty-two classes, and two archaeal phyla spanning eight classes, were seen in the 16S rRNA gene libraries of organic and conventional soil samples. The organic and conventional soil libraries were statistically different from each other although the sampling depth was not sufficient to make definitive inference about this environment. Horticultural Results: Fruit yields from organically managed apple trees were from one half to one third of the yields from conventionally managed trees. Based on input costs, organic fruit was about twice as expensive to produce. Asian pears (Prunus serotina) were also included in this horticultural analysis and showed greater field tolerance as an organic specialty niche crop than apples.