Animal & Avian Sciences Research Works
Permanent URI for this collectionhttp://hdl.handle.net/1903/1600
Browse
Search Results
Item Diet induced the change of mtDNA copy number and metabolism in Angus cattle(Springer Nature, 2020-07-21) Bai, Ying; Carrillo, José A.; Li, Yaokun; He, Yanghua; Song, JiuzhouGrass-fed and grain-fed Angus cattle differ in the diet regimes. However, the intricate mechanisms of different beef quality and other phenotypes induced by diet differences are still unclear. Diet affects mitochondrial function and dynamic behavior in response to changes in energy demand and supply. In this study, we examined the mtDNA copy number, mitochondria-related genes expression, and metabolic biomarkers in grass-fed and grain-fed Angus cattle. We found that the grass-fed group had a higher mtDNA copy number than the grain-fed group. Among different tissues, the mtDNA copy number was the highest in the liver than muscle, rumen, and spleen. Based on the transcriptome of the four tissues, a lower expression of mtDNA-encoded genes in the grass-fed group compared to the grain-fed group was discovered. For the mitochondria-related nuclear genes, however, most of them were significantly down-regulated in the muscle of the grass-fed group and up-regulated in the other three tissues. In which, COX6A2, POLG2, PPIF, DCN, and NDUFA12, involving in ATP synthesis, mitochondrial replication, transcription, and maintenance, might contribute to the alterations of mtDNA copy number and gene expression. Meanwhile, 40 and 23 metabolic biomarkers were identified in the blood and muscle of the grain-fed group compared to a grass-fed group, respectively. Integrated analysis of the altered metabolites and gene expression revealed the high expression level of MDH1 in the grain-fed group might contribute to the mitochondrial NADH oxidation and spermidine metabolism for adapting the deletion mtDNA copy number. Overall, the study may provide further deep insight into the adaptive and regulatory modulations of the mitochondrial function in response to different feeding systems in Angus cattle.Item Diet-induced changes in bacterial communities in the jejunum and their associations with bile acids in Angus beef cattle(Springer Nature, 2020-09-16) Liu, Jianan; Liu, Fang; Cai, Wentao; Jia, Cunling; Bai, Ying; He, Yanghua; Zhu, Weiyun; Li, Robert W.; Song, JiuzhouThe small intestine, while serving as the main absorption organ, also possesses a unique bacterial environment and holds the critical function of conversion of primary bile acids. Bile acids are, in turn, able to regulate bacterial composition and promote the growth of bacteria that convert primary bile acids to secondary bile acids. However, in beef cattle, few studies have explored the influence of diets on jejunal bacterial communities and examined its relationships with bile acids. Here, we examined the impact of grain- and grass-based diets on jejunal and fecal bacterial communities’ composition and investigated possible association of bacterial features with bile acids. We demonstrated that the influences of diets on intestinal bacteria can be observed in young beef cattle after weaning. A significantly higher level of microbial diversity was documented in feces of grass-fed cattle comparing to grain-fed cattle. Top 20 important genera identified with random forest analysis on fecal bacterial community can be good candidates for microbial biomarkers. Moreover, the jejunal bacteria of adult Angus beef cattle exhibited significant differences in microbial composition and metabolic potential under different diets. Global balances and bacteria signatures predictive of bile acids were identified, indicative of the potential association of bacterial features with bile acids. The findings from this study provided novel insights into the relationships between jejunal bacteria and bile acids under different diets in Angus beef cattle. Our results should help us gain a better understanding of potential health benefits of grass-fed beef.