Environmental Science & Technology Theses and Dissertations
Permanent URI for this collectionhttp://hdl.handle.net/1903/2748
Browse
5 results
Search Results
Item Managing Cover Crops for Better N Efficiency and Soil Health(2024) Stefun, Melissa; Weil, Ray; Environmental Science and Technology; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Winter cover cropping is a major tool that agriculture can use to protect soil and water quality and mitigate climate change. Unlike farmland in the world at large, most Maryland cropland has seen little tillage disturbance and some level of cover cropping for decades. With that background, field experiments on two soils with contrasting textures at the Beltsville Facility of Central Maryland Research and Education Center tested the effects of cover crop management enhancements on nitrogen (N) leaching, soil health indicators, and cover crop N uptake over three years. Two cover crops (sole rye and a mixture of forage radish, crimson clover, and rye) were compared to a control where cover cropping was ceased. The cash crops were corn and soybean grown in rotation. With best nutrient management practices applied, suction lysimeter sampling at 90 cm depth from October through April showed low levels of N leaching in general, but NO3-N concentrations were significantly lower under cover crops. Overall mean concentrations of NO3-N were 2.20 mg N/L in the control but 0.43 mg N/L under cover crops. Additionally, soil water samples were digested to determine dissolved organic N (DON) which was found to make up between 44-60% of the total dissolved N in the leaching water. In additional experiments, a small fertilizer N application was made to cover crops to stimulate rapid deep rooting with the goal of accessing soluble N deep in the profile to increase N capture by more than the amount of N applied. The response to fall N fertilization failed to accomplish this goal and was not related to the surface soil NO3-N concentration as expected. In spring, cover crops were terminated on three dates from mid-April to mid-May and rye biomass doubled with each extra two weeks it was allowed to grow whether it was in the mix or alone. The effect of cover crops on soil health indicators was evident with increased soil permanganate oxidizable carbon, total soil carbon, lower bulk density, and greater aggregation. These experiments demonstrated that cover crops with enhanced management can have marked effects on an agricultural system already using sustainable practices.Item Utilizing algal turf scrubbers for bioremediation and bioenergy production(2023) Delp, Danielle Marie; Lansing, Stephanie A; Environmental Science and Technology; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)This dissertation researched the conversion of algal biomass that was generated as a byproduct of bioremediation by algal turf scrubbers (ATS) into bioenergy via anaerobic digestion. Anaerobic digestion is a bacterial process that converts organic material into bioenergy in the form of biogas that contains methane (CH4), the primary component of natural gas. Bioenergy yield was quantified as the volume of CH4 generated from digestion of the algae in relation to seasonal changes in algal biomass yield, different digester operational parameters, co-digestion of the biomass with more conventional digestion feedstock, and flocculation pre-treatment for dewatering of algae prior to digestion. The first study used a pilot-scale mesophilic digester at the Port of Baltimore (Baltimore, MD, USA) to continuously digest algae from a 122 m2 ATS on the Patapsco River over two years. Biomass generation was significantly correlated to maximum daily air temperature, water temperature, and flow rate in Year 1 but only water flow rate in Year 2. Algae of the taxa Ochrophyta dominated the algal turf, especially the filamentous diatom Melosira sp., in both years. In Year 1 of the study, two anaerobic digestion systems with variable hydraulic retention times (HRT), designated D1 (average HRT 45.0 ± 5.8 days) and D2-D3 (average HRT 61.0 ± 8.1 days) were used to digest the algae. The D1 generated 1090 L CH4 from 2416 L of algae over a 39-day HRT (59.1 ± 8.9 L algae/kg VS), and D2-D3 generated 1170 L CH4 from 2337 L of algae over a 53-day HRT (67.9 ± 11.0 L algae/kg VS). The difference in CH4 yield with two different HRTs was not significant. In Year 2, only the D2-D3 was operated and was modified to test the use of active recirculation and heating to improve digestion efficiency and CH4 yield. The D2-D3 system generated 4000 L of CH4 (163 ± 42 L algae/kg VS) from 3310 L of algae in Year 2. The second study consisted of laboratory-scale biomethane potential tests to test changes in CH4 yield when algae harvested from an Anacostia River (Bladensburg, MD, USA) ATS was co-digested with three wastes (dairy manure, food waste, and poultry litter) at algae:waste loading ratios of at 1:1, 1:2, 1:5, and 1:10 by organic material, or volatile solids (VS), content. The algal biomass was the least efficient substrate at generating CH4 when normalized by both mass VS digested (109 ± 4 mL CH4/g VS) and total mass of substrate digested (0.687 ± 0.025 mL CH4/g substrate). Co-digestion with all three of the wastes at all ratios tested significantly increased CH4 generation efficiency per mass VS compared to only digesting algae. However, the high moisture content of the algae (95.2%) relative to the other co-digestion wastes (29.0-84.6%) significantly decreased CH4 production on a mass basis for the dairy manure, food waste, and poultry litter when algae was added at any loading ratio. A lettuce growth experiment using the effluent of the digestion vessels showed no signs of acute toxicity when any of the diluted (8-fold) digester effluents were applied as fertilizer to the developing plants. The third and final study consisted of flocculation experiments that tested 500-mL of algae using four experimental treatments (FeCl3, electrocoagulation, chitosan, and Bacillus sp. RP 1137) to dewater algae harvested from the Anacostia River ATS and compared to gravity settling as a control. The experimental flocculants successfully increased the total solids (TS) of the ATS algae by 14-291% depending on the treatment, with electrocoagulation being the least effective and bacterial flocculation being the most effective flocculant. All treatments reduced total suspended solids (TSS) in the drained supernatant by >98%. The raw ATS algae and dewatered solids from the settling experiment were then digested for 35-days, with the algae yielding 49.6 ± 3.6 mL of CH4/g VS. The dewatered solids had reduced digestion efficiency by 29.6-71.0% compared to untreated algae. Dewatering pre-treatment increased CH4 yield from the algae when normalized by total g substrate fed to the reactor (1.65 ± 0.12 mL CH4/g substrate) for all treatments except bacteria 1x, however the effect was only significant for solids dewatered with electrocoagulation. The results from the three studies show that temperature drives algal growth patterns in temperate climates, which results in seasonally variable biomass yield from ATS, with a corresponding variability in CH4 production due to inconsistent availability of the algal feedstock. Algae can be co-digested with agricultural and food wastes that are generated year-round to reduce variability in feedstock availability. Thickening and dewatering the algae improves CH4 yield on a mass basis, however the digestion efficiency was reduced. In conclusion, the findings suggest that anaerobic digestion is a viable means of managing the algae harvested from ATS systems with and without co-digestion of the algal biomass.Item SURVIVAL OF ESCHERICHIA COLI AND CHANGES IN PHYSICOCHEMICAL PARAMETERS IN AQUAPONIC SYSTEMS DURING BASIL AND LETTUCE PRODUCTION(2023) Quach, Emily; Yonkos, Lance; Environmental Science and Technology; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Aquaponics (APs), a soilless production system, integrates aquaculture and hydroponics to provide local fresh produce while conserving natural resources. The absence of soil in APs eliminates one potential food safety risk present in typical soil-based production systems, but APs may become contaminated from a variety of sources. Escherichia coli TVS 354 long-term survival was evaluated in bench-scale, deep-water APs units. In addition, pathogen presence on basil and lettuce at the time of harvest and changes in the population density of mesophilic aerobic bacteria in APs were measured. Results showed E. coli populations significantly decreased 24 h post-inoculation in water samples and remained undetectable by day 1 post-inoculation. Lettuce harvested on day 60 had detectable E. coli on lettuce leaves and roots at harvest. These results provide new insight on E. coli survival in harvested plants, indicate potential risks for foodborne illnesses, and unreliability of water testing as a monitoring tool.Item Extending the Cover Crop Growing Season to Reduce Nitrogen Pollution(2021) Sedghi, Nathan; Weil, Ray R; Environmental Science and Technology; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Maryland currently has the highest rate of cover crop use in the United States. The Cover Crop Program, started as an initiative to clean nutrients from the Chesapeake Bay, has made it a common practice to plant a cereal cover crop after cash crop harvest in fall, and kill it several weeks before cash crop planting in spring. In Maryland, this practice does not allow enough growing time with warm conditions for optimal cover crop growth. Planting earlier in fall and killing a cover crop later in spring could improve soil N cycling. We hypothesized that interseeding into a cash crop in early fall, and delaying spring cover crop termination could increase cover crop biomass, carbon accumulation, and nitrogen uptake and decrease nitrate leached. We tested these hypotheses over four years with five field experiments, consistently using a brassica-legume-cereal cover crop mix. We evaluated the relationships between cover crop planting date and fall cover crop N uptake and reduction in nitrate leaching. In spring, we tested termination timing effects on cover biomass C and N, soil mineral N concentration, soil moisture, and corn yield. We tested multiple dates for broadcast interseeding cover crops into standing soybean cash crops. We partnered with farmers on Maryland’s Eastern Shore to test if our methods are feasible at a realistic scale. We measured nitrous oxide emissions to test if our recommended cover crop practice has the negative drawback of increasing emissions of nitrous oxide, a powerful greenhouse gas. The nitrate leached under late drilled and early interseeded methods were comparable under conditions which favored late drilling, but interseeding outperformed drilling when there was adequate rainfall for seed germination. The result was lower nitrate porewater concentrations under early planted cover crops. Nitrous oxide emissions increased slightly with cover crops relative to no cover crop, but the increase was negligible when compared to the nitrous oxide produced from applying N fertilizer. Our research showed that extending the cover crop growing season of a brassica-legume-cereal mix has multiple environmental benefits and few drawbacks.Item Sulfur Management to Enhance Yield and Protein Quality of Grain Legumes(2020) Rushovich, Dana Alison; Weil, Raymond; Environmental Science and Technology; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Sulfur (S) is an essential macronutrient and a key component in essential amino acids, methionine and cysteine (MET+CYS) that are the building blocks of protein. For a number of reasons, including difficulties in analysis for S, soil testing and fertility management has largely ignored this essential plant macronutrient. Trials were carried out over three years to evaluate the role of S fertility on the yield, seed S content, S yield and seed MET+CYS content of three types of grain legumes: double crop soybeans (Glycine Max), full season soybeans, and common dry beans (Phaseolus vulgaris). Sulfur fertility management significantly increased yield, seed S content, S yield, and seed MET+CYS content on low S soils. Additionally, four soil extractions were evaluated as potential methods to improve S fertility recommendations. Calcium phosphate extractions more accurately identified sites that had a yield or seed s content response to applied S compared to Mehlich 3 and Calcium Chloride.