Fischell Department of Bioengineering Research Works

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 5 of 31
  • Item
    In-situ cryo-immune engineering of tumor microenvironment with cold-responsive nanotechnology for cancer immunotherapy
    (Springer Nature, 2023-01-24) Ou, Wenquan; Stewart, Samantha; White, Alisa; Kwizera, Elyahb A.; Xu, Jiangsheng; Fang, Yuanzheng; Shamul, James G.; Xie, Changqing; Nurudeen, Suliat; Tirada, Nikki P.; Lu, Xiongbin; Tkaczuk, Katherine H.R.; He, Xiaoming
    Cancer immunotherapy that deploys the host’s immune system to recognize and attack tumors, is a promising strategy for cancer treatment. However, its efficacy is greatly restricted by the immunosuppressive (i.e., immunologically cold) tumor microenvironment (TME). Here, we report an in-situ cryo-immune engineering (ICIE) strategy for turning the TME from immunologically “cold” into “hot”. In particular, after the ICIE treatment, the ratio of the CD8+ cytotoxic T cells to the immunosuppressive regulatory T cells is increased by more than 100 times in not only the primary tumors with cryosurgery but also distant tumors without freezing. This is achieved by combining cryosurgery that causes “frostbite” of tumor with cold-responsive nanoparticles that not only target tumor but also rapidly release both anticancer drug and PD-L1 silencing siRNA specifically into the cytosol upon cryosurgery. This ICIE treatment leads to potent immunogenic cell death, which promotes maturation of dendritic cells and activation of CD8+ cytotoxic T cells as well as memory T cells to kill not only primary but also distant/metastatic breast tumors in female mice (i.e., the abscopal effect). Collectively, ICIE may enable an efficient and durable way to leverage the immune system for combating cancer and its metastasis.
  • Item
    Self-assembly of immune signals to program innate immunity through rational adjuvant design
    (Wiley, 2022-11-14) Bookstaver, Michelle L.; Zeng, Qin; Oakes, Robert S.; Kapnick, Senta M.; Saxena, Vikas; Edwards, Camilla; Venkataraman, Nishedhya; Black, Sheneil K.; Zeng, Xiangbin; Froimchuk, Eugene; Gebhardt, Thomas; Bromberg, Jonathan S.; Jewell, Christopher M.
    Recent clinical studies show activating multiple innate immune pathways drives robust responses in infection and cancer. Biomaterials offer useful features to deliver multiple cargos, but add translational complexity and intrinsic immune signatures that complicate rational design. Here a modular adjuvant platform is created using self-assembly to build nanostructured capsules comprised entirely of antigens and multiple classes of toll-like receptor agonists (TLRas). These assemblies sequester TLR to endolysosomes, allowing programmable control over the relative signaling levels transduced through these receptors. Strikingly, this combinatorial control of innate signaling can generate divergent antigen-specific responses against a particular antigen. These assemblies drive reorganization of lymph node stroma to a pro-immune microenvironment, expanding antigen-specific T cells. Excitingly, assemblies built from antigen and multiple TLRas enhance T cell function and antitumor efficacy compared to ad-mixed formulations or capsules with a single TLRa. Finally, capsules built from a clinically relevant human melanoma antigen and up to three TLRa classes enable simultaneous control of signal transduction across each pathway. This creates a facile adjuvant design platform to tailor signaling for vaccines and immunotherapies without using carrier components. The modular nature supports precision juxtaposition of antigen with agonists relevant for several innate receptor families, such as toll, STING, NOD, and RIG.
  • Item
    Induced pluripotent stem cell-derived cells model brain microvascular endothelial cell glucose metabolism
    (Springer Nature, 2022-12-09) Weber, Callie M.; Moiz, Bilal; Zic, Sophia M.; Vargas, Viviana Alpízar; Li, Andrew; Morss Clyne, Alisa
    Glucose transport from the blood into the brain is tightly regulated by brain microvascular endothelial cells (BMEC), which also use glucose as their primary energy source. To study how BMEC glucose transport contributes to cerebral glucose hypometabolism in diseases such as Alzheimer’s disease, it is essential to understand how these cells metabolize glucose. Human primary BMEC (hpBMEC) can be used for BMEC metabolism studies; however, they have poor barrier function and may not recapitulate in vivo BMEC function. iPSC-derived BMEC-like cells (hiBMEC) are readily available and have good barrier function but may have an underlying epithelial signature. In this study, we examined differences between hpBMEC and hiBMEC glucose metabolism using a combination of dynamic metabolic measurements, metabolic mass spectrometry, RNA sequencing, and Western blots. hiBMEC had decreased glycolytic flux relative to hpBMEC, and the overall metabolomes and metabolic enzyme levels were different between the two cell types. However, hpBMEC and hiBMEC had similar glucose metabolism, including nearly identical glucose labeled fractions of glycolytic and TCA cycle metabolites. Treatment with astrocyte conditioned media and high glucose increased glycolysis in both hpBMEC and hiBMEC, though hpBMEC decreased glycolysis in response to fluvastatin while hiBMEC did not. Together, these results suggest that hiBMEC can be used to model cerebral vascular glucose metabolism, which expands their use beyond barrier models.
  • Item
    Parsed synthesis of pyocyanin via co-culture enables context-dependent intercellular redox communication
    (Springer Nature, 2021-11-24) Chun, Kayla; Stephens, Kristina; Wang, Sally; Tsao, Chen-Yu; Payne, Gregory F.; Bentley, William E.
    Microbial co-cultures and consortia are of interest in cell-based molecular production and even as “smart” therapeutics in that one can take advantage of division of labor and specialization to expand both the range of available functions and mechanisms for control. The development of tools that enable coordination and modulation of consortia will be crucial for future application of multi-population cultures. In particular, these systems would benefit from an expanded toolset that enables orthogonal inter-strain communication. We created a co-culture for the synthesis of a redox-active phenazine signaling molecule, pyocyanin (PYO), by dividing its synthesis into the generation of its intermediate, phenazine carboxylic acid (PCA) from the first strain, followed by consumption of PCA and generation of PYO in a second strain. Interestingly, both PCA and PYO can be used to actuate gene expression in cells engineered with the soxRS oxidative stress regulon, although importantly this signaling activity was found to depend on growth media. That is, like other signaling motifs in bacterial systems, the signaling activity is context dependent. We then used this co-culture’s phenazine signals in a tri-culture to modulate gene expression and production of three model products: quorum sensing molecule autoinducer-1 and two fluorescent marker proteins, eGFP and DsRed. We also showed how these redox-based signals could be intermingled with other quorum-sensing (QS) signals which are more commonly used in synthetic biology, to control complex behaviors. To provide control over product synthesis in the tri-cultures, we also showed how a QS-induced growth control module could guide metabolic flux in one population and at the same time guide overall tri-culture function. Specifically, we showed that phenazine signal recognition, enabled through the oxidative stress response regulon soxRS, was dependent on media composition such that signal propagation within our parsed synthetic system could guide different desired outcomes based on the prevailing environment. In doing so, we expanded the range of signaling molecules available for coordination and the modes by which they can be utilized to influence overall function of a multi-population culture. Our results show that redox-based signaling can be intermingled with other quorum sensing signaling in ways that enable user-defined control of microbial consortia yielding various outcomes defined by culture medium. Further, we demonstrated the utility of our previously designed growth control module in influencing signal propagation and metabolic activity is unimpeded by orthogonal redox-based signaling. By exploring novel multi-modal strategies for guiding communication and consortia outcome, the concepts introduced here may prove to be useful for coordination of multiple populations within complex microbial systems.
  • Item
    Decrease of resistance to air flow with nasal strips as measured with the airflow perturbation device
    (Springer Nature, 2004-10-22) Wong, Lily S; Johnson, Arthur T
    Nasal strips are used by athletes, people who snore, and asthmatics to ease the burden of breathing. Although there are some published studies that demonstrate higher flow with nasal strips, none had directly measured the effect of the strips on nasal resistance using the airflow perturbation device (APD). The APD is an inexpensive instrument that can measure respiratory resistance based on changes in mouth pressure and rate of airflow. This study tested forty-seven volunteers (14 men and 33 women), ranging in age from 17 to 51. Each volunteer was instructed to breathe normally into the APD using an oronasal mask with and without nasal strips. The APD measured respiratory resistance during inhalation, exhalation, and an average of the two. Results of a paired mean t-test comparing nasal strip against no nasal strip were statistically significant at the p = 0.05 level. The Breathe Right™ nasal dilator strips lowered nasal resistance by an average of 0.5 cm H20/Lps from an average nasal resistance of 5.5 cm H20/Lps. Nasal strips reduce nasal resistance when measured with the APD. The effect is equal during exhalation and during inhalation.