Fischell Department of Bioengineering Research Works

Permanent URI for this collectionhttp://hdl.handle.net/1903/6627

Browse

Search Results

Now showing 1 - 10 of 70
  • Thumbnail Image
    Item
    Increased phagocytosis capacity of circulating neutrophils in patients on continuous flow ventricular assist device support
    (Wiley, 2023-12-22) Awad, Morcos A.; Sun, Wenji; Han, Dong; Griffith, Bartly P.; Wu, Zhongjun J.
    Background Neutrophils take part in the innate immune response, phagocytosis, and pro-inflammatory cytokine release. The phagocytic capacity of circulating neutrophils in patients on continuous flow (CF) ventricular assist device (VAD) has not been well studied. Methods Blood samples from 14 patients undergoing CF-VAD implantation were collected and analyzed preoperatively (at baseline) and on postoperative days (POD) 3, 7, 14, and 28. Flow cytometry was used to assess the surface expression levels of CD62L, CD162, and macrophage antigen-1 (MAC-1) and neutrophil phagocytic capacity. Interleukin 1 (IL1), IL6, IL8, TNF-α, neutrophil elastase, and myeloperoxidase in plasma were measured using enzyme-linked immunosorbent assays. Results Among the 14 patients, seven patients had preoperative bridge device support. Relative to baseline, patients with no bridge device had elevated leukocyte count and neutrophil elastase by POD3 which normalized by POD7. Neutrophil activation level, IL6, IL8, and TNF-α increased by POD3 and sustained elevated levels for 7–14 days postoperatively. Elevated neutrophil phagocytic capacity persisted even until POD28. Similar patterns were observed in patients on a preoperative bridge device. Conclusions Neutrophil activation and phagocytic capacity increased in response to VAD support, while inflammatory cytokines remain elevated for up to 2 weeks postoperatively. These findings may indicate that VAD implantation elicits circulating neutrophils to an abnormal preemptive phagocytotic phenotype.
  • Thumbnail Image
    Item
    Investigation of the role of von Willebrand factor in shear-induced platelet activation and functional alteration under high non-physiological shear stress
    (Wiley, 2023-12-19) Han, Dong; Sun, Wenji; Clark, Kiersten P.; Griffith, Bartley P.; Wu, Zhongjun J.
    Background von Willebrand factor (vWF) plays a crucial role in physiological hemostasis through platelet and subendothelial collagen adhesion. However, its role in shear-induced platelet activation and functional alteration under non-physiological conditions common to blood-contacting medical devices (BCMDs) is not well investigated. Methods Fresh healthy human blood was treated with an anti-vWF antibody to block vWF–GPIbα interaction. Untreated blood was used as a control. They were exposed to three levels of non-physiological shear stress (NPSS) (75, 125, and 175 Pa) through a shearing device with an exposure time of 0.5 s to mimic typical shear conditions in BCMDs. Flow cytometric assays were used to measure the expression levels of PAC-1 and P-Selectin and platelet aggregates for platelet activation and the expression levels of GPIbα, GPIIb/IIIa, and GPVI for receptor shedding. Collagen/ristocetin-induced platelet aggregation capacity was characterized by aggregometry. Results The levels of platelet activation and aggregates increased with increasing NPSS in the untreated blood. More receptors were lost with increasing NPSS, resulting in a decreased capacity of collagen/ristocetin-induced platelet aggregation. In contrast, the increase in platelet activation and aggregates after exposure to NPSS, even at the highest level of NPSS, was significantly lower in treated blood. Nevertheless, there was no notable difference in receptor shedding, especially for GPIIb/IIIa and GPVI, between the two blood groups at the same level of NPSS. The block of vWF exacerbated the decreased capacity of collagen/ristocetin-induced platelet aggregation. Conclusions High NPSS activates platelets mainly by enhancing the vWF–GPIbα interaction. Platelet activation and receptor shedding induced by high NPSS likely occur through different pathways.
  • Thumbnail Image
    Item
    Investigating the origin of the 13C lactate signal in the anesthetized healthy rat brain in vivo after hyperpolarized [1-13C]pyruvate injection
    (Wiley, 2023-11-22) Zhu, Minjie; Jhajharia, Aditya; Josan, Sonal; Park, Jae Mo; Yen, Yi-Fen; Pfefferbaum, Adolf; Hurd, Ralph E.; Spielman, Daniel M.; Mayer, Dirk
    The goal of this study was to investigate the origin of brain lactate (Lac) signal in the healthy anesthetized rat after injection of hyperpolarized (HP) [1-13C]pyruvate (Pyr). Dynamic two-dimensional spiral chemical shift imaging with flow-sensitizing gradients revealed reduction in both vascular and brain Pyr, while no significant dependence on the level of flow suppression was detected for Lac. These results support the hypothesis that the HP metabolites predominantly reside in different compartments in the brain (i.e., Pyr in the blood and Lac in the parenchyma). Data from high-resolution metabolic imaging of [1-13C]Pyr further demonstrated that Lac detected in the brain was not from contributions of vascular signal attributable to partial volume effects. Additionally, metabolite distributions and kinetics measured with dynamic imaging after injection of HP [1-13C]Lac were similar to Pyr data when Pyr was used as the substrate. These data do not support the hypothesis that Lac observed in the brain after Pyr injection was generated in other organs and then transported across the blood–brain barrier (BBB). Together, the presented results provide further evidence that even in healthy anesthetized rats, the transport of HP Pyr across the BBB is sufficiently fast to permit detection of its metabolic conversion to Lac within the brain.
  • Thumbnail Image
    Item
    Computational fluid dynamics-based design and in vitro characterization of a novel pediatric pump-lung
    (Wiley, 2023-10-05) Han, Dong; Zhang, Jiafeng; He, Ge; Griffith, Bradley P.; Wu, Zhongjun J.
    Background Although extracorporeal membrane oxygenation (ECMO) has been used to provide temporary support for pediatric patients suffering severe respiratory or cardiac failure since 1970, ECMO systems specifically designed for pediatric patients, particularly for long-term use, remain an unmet clinical need. We sought to develop a new pediatric ECMO system, that is, pediatric pump-lung (PPL), consisting of a unique cylinder oxygenator with an outside-in radial flow path and a centrifugal pump. Methods Computational fluid dynamics was used to analyze the blood fluid field for optimized biocompatible and gas exchange performances in terms of flow characteristics, hemolysis, and gas transfer efficiency. Ovine blood was used for in vitro hemolysis and gas transfer testing. Results Both the computational and experimental data showed that the pressure drop through the PPL's oxygenator is significantly low, even at a flow rate of more than 3.5 L/min. The PPL showed better hemolysis performance than a commercial ECMO circuit consisting of the Quadrox-iD pediatric oxygenator and the Rotaflow pump at a 3.5 L/min flow rate and 250 mm Hg afterload pressure. The oxygen transfer rate of the PPL can reach over 200 mL/min at a flow rate of 3.5 L/min. Conclusions The PPL has the potential to provide adequate blood pumping and excellent respiratory support with minimal risk of hemolysis for a wide range of pediatric patients.
  • Thumbnail Image
    Item
    High performance anion exchange chromatography purification of probiotic bacterial extracellular vesicles enhances purity and anti-inflammatory efficacy
    (Wiley, 2023-08-09) Pirolli, Nicholas H.; Reus, Laura Samantha C.; Mamczarz, Zuzanna; Lhan, Sulayman; Bentley, William E.; Jay, Steven M.
    Bacterial extracellular vesicles (BEVs), including outer membrane vesicles, have emerged as a promising new class of vaccines and therapeutics to treat cancer and inflammatory diseases, among other applications. However, clinical translation of BEVs is hindered by a current lack of scalable and efficient purification methods. Here, we address downstream BEV biomanufacturing limitations by developing a method for orthogonal size- and charge-based BEV enrichment using tangential flow filtration (TFF) in tandem with high performance anion exchange chromatography (HPAEC). The data show that size-based separation coisolated protein contaminants, whereas size-based TFF with charged-based HPAEC dramatically improved purity of BEVs produced by probiotic Gram-negative Escherichia coli and Gram-positive lactic acid bacteria (LAB). Escherichia coli BEV purity was quantified using established biochemical markers while improved LAB BEV purity was assessed via observed potentiation of anti-inflammatory bioactivity. Overall, this work establishes orthogonal TFF + HPAEC as a scalable and efficient method for BEV purification that holds promise for future large-scale biomanufacturing of therapeutic BEV products.
  • Thumbnail Image
    Item
    Test method for evaluating the photocytotoxic potential of fluorescence imaging products
    (Wiley, 2023-07-26) Vig, Shruti; Gaitan, Brandon; Frankle, Lucas; Chen, Yu; Elespuru, Rosalie; Pfefer, T. Joshua; Huang, Huang-Chiao
    Various fluorescence imaging agents are currently under clinical studies. Despite significant benefits, phototoxicity is a barrier to the clinical translation of fluorophores. Current regulatory guidelines on medication-based phototoxicity focus on skin effects during sun exposure. However, with systemic and local administration of fluorophores and targeted illumination, there is now possibility of photochemical damage to deeper tissues during intraoperative imaging procedures. Hence, independent knowledge regarding phototoxicity is required to facilitate the development of fluorescence imaging products. Previously, we studied a cell-free assay for initial screening of reactive molecular species generation from fluorophores. The current work addresses a safety test method based on cell viability as an adjunct and a comparator with the cell-free assay. Our goal is to modify and implement an approach based on the in vitro 3T3 neutral red uptake assay of the Organization for Economic Co-Operation and Development Test Guideline 432 (OECD TG432) to evaluate the photocytotoxicity of clinically relevant fluorophores. These included indocyanine green (ICG), proflavine, methylene blue (MB), and IRDye800, as well as control photosensitizers, benzoporphyrin derivative (BPD) and rose bengal (RB). We performed measurements at agent concentrations and illumination parameters used for clinic imaging. Our results aligned with prior studies, indicating photocytotoxicity in RB and BPD and an absence of reactivity for ICG and IRDye800. DNA interactive agents, proflavine and MB, exhibited drug/light dose–response curves like photosensitizers. This study provides evidence and insights into practices useful for testing the photochemical safety of fluorescence imaging products.
  • Thumbnail Image
    Item
    Abnormal coordination of upper extremity during target reaching in persons post stroke
    (Springer Nature, 2023-08-08) Koh, Kyung; Oppizzi, Giovanni; Kehs, Glenn; Zhang, Li-Qun
    Understanding abnormal synergy of the upper extremity (UE) in stroke survivors is critical for better identification of motor impairment. Here, we investigated to what extent stroke survivors retain the ability to coordinate multiple joints of the arm during a reaching task. Using an exoskeleton robot, 37 stroke survivors’ arm joint angles (θ) and torques (τ) during hand reaching in the horizontal plane was compared to that of 13 healthy controls. Kinematic and kinetic coordination patterns were quantified as variances of the multiple-joint angles and multiple-joint torques across trials, respectively, that were partitioned into task-irrelevant variance (TIVθ and TIVτ) and task-relevant variance (TRVθ and TRVτ). TIVθ and TRVθ (or TIVτ and TRVτ) led to consistent and inconsistent hand position (or force), respectively. The index of synergy (ISθ and ISτ) was determined as ISθ = (TIVθ - TRVθ)/(TIVθ + TRVθ) and ISτ = (TIVτ - TRVτ)/(TIVτ + TRVτ) for kinematic and kinetic coordination patterns, respectively. Both kinematic ISθ and kinetic ISτ in the stroke group were significantly lower than that of the control group, indicating stroke survivors had impaired reaching abilities in utilizing the multiple joints of the UE for successful completion of a reaching task. The reduction of kinematic ISθ in the stroke group was mainly attributed to the lower TIVθ as compared to the control group, while the reduction of kinetic ISτ was mainly due to the higher TRVτ as well as lower TIVτ. Our results also indicated that stroke may lead to motor deficits in formation of abnormal kinetic synergistic movement of UE, especially during outward movement. The findings in abnormal synergy patterns provides a better understanding of motor impairment, suggesting that impairment-specific treatment could be identified to help improve UE synergies, focusing on outward movements.
  • Thumbnail Image
    Item
    Chitosan to Connect Biology to Electronics: Fabricating the Bio-Device Interface and Communicating Across This Interface
    (MDPI, 2014-12-24) Kim, Eunkyoung; Xiong, Yuan; Cheng, Yi; Wu, Hsuan-Chen; Liu, Yi; Morrow, Brian H.; Ben-Yoav, Hadar; Ghodssi, Reza; Rubloff, Gary W.; Shen, Jana; Bentley, William E.; Shi, Xiaowen; Payne, Gregory F.
    Individually, advances in microelectronics and biology transformed the way we live our lives. However, there remain few examples in which biology and electronics have been interfaced to create synergistic capabilities. We believe there are two major challenges to the integration of biological components into microelectronic systems: (i) assembly of the biological components at an electrode address, and (ii) communication between the assembled biological components and the underlying electrode. Chitosan possesses a unique combination of properties to meet these challenges and serve as an effective bio-device interface material. For assembly, chitosan’s pH-responsive film-forming properties allow it to “recognize” electrode-imposed signals and respond by self-assembling as a stable hydrogel film through a cathodic electrodeposition mechanism. A separate anodic electrodeposition mechanism was recently reported and this also allows chitosan hydrogel films to be assembled at an electrode address. Protein-based biofunctionality can be conferred to electrodeposited films through a variety of physical, chemical and biological methods. For communication, we are investigating redox-active catechol-modified chitosan films as an interface to bridge redox-based communication between biology and an electrode. Despite significant progress over the last decade, many questions still remain which warrants even deeper study of chitosan’s structure, properties, and functions.
  • Thumbnail Image
    Item
    Engineering Cell Surfaces with Polyelectrolyte Materials for Translational Applications
    (MDPI, 2017-01-28) Zhang, Peipei; Bookstaver, Michelle L.; Jewell, Christopher M.
    Engineering cell surfaces with natural or synthetic materials is a unique and powerful strategy for biomedical applications. Cells exhibit more sophisticated migration, control, and functional capabilities compared to nanoparticles, scaffolds, viruses, and other engineered materials or agents commonly used in the biomedical field. Over the past decade, modification of cell surfaces with natural or synthetic materials has been studied to exploit this complexity for both fundamental and translational goals. In this review we present the existing biomedical technologies for engineering cell surfaces with one important class of materials, polyelectrolytes. We begin by introducing the challenges facing the cell surface engineering field. We then discuss the features of polyelectrolytes and how these properties can be harnessed to solve challenges in cell therapy, tissue engineering, cell-based drug delivery, sensing and tracking, and immune modulation. Throughout the review, we highlight opportunities to drive the field forward by bridging new knowledge of polyelectrolytes with existing translational challenges.
  • Thumbnail Image
    Item
    Catechol-Based Hydrogel for Chemical Information Processing
    (MDPI, 2017-07-03) Kim, Eunkyoung; Liu, Zhengchun; Liu, Yi; Bentley, William E.; Payne, Gregory F.
    Catechols offer diverse properties and are used in biology to perform various functions that range from adhesion (e.g., mussel proteins) to neurotransmission (e.g., dopamine), and mimicking the capabilities of biological catechols have yielded important new materials (e.g., polydopamine). It is well known that catechols are also redox-active and we have observed that biomimetic catechol-modified chitosan films are redox-active and possess interesting molecular electronic properties. In particular, these films can accept, store and donate electrons, and thus offer redox-capacitor capabilities. We are enlisting these capabilities to bridge communication between biology and electronics. Specifically, we are investigating an interactive redox-probing approach to access redox-based chemical information and convert this information into an electrical modality that facilitates analysis by methods from signal processing. In this review, we describe the broad vision and then cite recent examples in which the catechol–chitosan redox-capacitor can assist in accessing and understanding chemical information. Further, this redox-capacitor can be coupled with synthetic biology to enhance the power of chemical information processing. Potentially, the progress with this biomimetic catechol–chitosan film may even help in understanding how biology uses the redox properties of catechols for redox signaling.