UMD Theses and Dissertations
Permanent URI for this collectionhttp://hdl.handle.net/1903/3
New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a given thesis/dissertation in DRUM.
More information is available at Theses and Dissertations at University of Maryland Libraries.
Browse
2 results
Search Results
Item Modeling and Experimental Techniques to Demonstrate Nanomanipulation With Optical Tweezers(2011) Balijepalli, Arvind K.; Gupta, Satyandra K; LeBrun, Thomas W; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The development of truly three-dimensional nanodevices is currently impeded by the absence of effective prototyping tools at the nanoscale. Optical trapping is well established for flexible three-dimensional manipulation of components at the microscale. However, it has so far not been demonstrated to confine nanoparticles, for long enough time to be useful in nanoassembly applications. Therefore, as part of this work we demonstrate new techniques that successfully extend optical trapping to nanoscale manipulation. In order to extend optical trapping to the nanoscale, we must overcome certain challenges. For the same incident beam power, the optical binding forces acting on a nanoparticle within an optical trap are very weak, in comparison with forces acting on microscale particles. Consequently, due to Brownian motion, the nanoparticle often exits the trap in a very short period of time. We improve the performance of optical traps at the nanoscale by using closed-loop control. Furthermore, we show through laboratory experiments that we are able to localize nanoparticles to the trap using control systems, for sufficient time to be useful in nanoassembly applications, conditions under which a static trap set to the same power as the controller is unable to confine a same-sized particle. Before controlled optical trapping can be demonstrated in the laboratory, key tools must first be developed. We implement Langevin dynamics simulations to model the interaction of nanoparticles with an optical trap. Physically accurate simulations provide a robust platform to test new methods to characterize and improve the performance of optical tweezers at the nanoscale, but depend on accurate trapping force models. Therefore, we have also developed two new laboratory-based force measurement techniques that overcome the drawbacks of conventional force measurements, which do not accurately account for the weak interaction of nanoparticles in an optical trap. Finally, we use numerical simulations to develop new control algorithms that demonstrate significantly enhanced trapping of nanoparticles and implement these techniques in the laboratory. The algorithms and characterization tools developed as part of this work will allow the development of optical trapping instruments that can confine nanoparticles for longer periods of time than is currently possible, for a given beam power. Furthermore, the low average power achieved by the controller makes this technique especially suitable to manipulate biological specimens, but is also generally beneficial to nanoscale prototyping applications. Therefore, capabilities developed as part of this work, and the technology that results from it may enable the prototyping of three-dimensional nanodevices, critically required in many applications.Item Characterization of Bending Magnetostriction in Iron-Gallium Alloys for Nanowire Sensor Applications(2008-11-21) Downey, Patrick; Flatau, Alison; Aerospace Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)This research explores the possibility of using electrochemically deposited nanowires of magnetostrictive iron-gallium (Galfenol) to mimic the sensing capabilities of biological cilia. Sensor design calls for incorporating Galfenol nanowires cantilevered from a membrane and attached to a conventional magnetic field sensor. As the wires deflect in response to acoustic, airflow, or tactile excitation, the resultant bending stresses induce changes in magnetization that due to the scale of the nanowires offer the potential for excellent spatial resolution and frequency bandwidth. In order to determine the suitability for using Galfenol nanowires in this role, the first task was experimentally characterizing magnetostrictive transduction in bending beam structures, as this means of operation has been unattainable in previous materials research due to low tensile strengths in conventional alloys such as Terfenol-D. Results show that there is an appreciable sensing response from cantilevered Galfenol beams and that this phenomenon can be accurately modeled with an energy based formulation. For progressing experiments to the nanowire scale, a nanomanipulation instrument was designed and constructed that interfaces within a scanning electron microscope and allows for real time characterization of individual wires with diameters near 100 nm. The results of mechanical tensile testing and dynamic resonance identification reveal that the Galfenol nanowires behave similarly to the bulk material with the exception of a large increase in ultimate tensile strength. The magnetic domain structure of the nanowires was theoretically predicted and verified with magnetic force microscopy. An experimental methodology was developed to observe the coupling between bending stress and magnetization that is critical for accurate sensing, and the key results indicate that specific structural modifications need to be made to reduce the anisotropy in the nanowires in order to improve the transduction capabilities. A solution to this problem is presented and final experiments are performed.