UMD Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/3

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a given thesis/dissertation in DRUM.

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Weil-etale Cohomology over Local Fields
    (2012) Karpuk, David Anton; Ramachandran, Niranjan; Mathematics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    In a recent article, Lichtenbaum established the arithmetic utility of the Weil group of a finite field, by demonstrating a connection between certain Euler characteristics in Weil-etale cohomology and special values of zeta functions. In particular, the order of vanishing and leading coefficient of the zeta function of a smooth, projective variety over a finite field have a Weil-etale cohomological interpretation. These results rely on a duality theorem stated in terms of cup-product in Weil-etale cohomology. With Lichtenbaum's paradigm in mind, we establish results for the cohomology of the Weil group of a local field, analogous to, but more general than, results from Galois cohomology. We prove a duality theorem for discrete Weil group modules, which implies the main theorem of Local Class Field Theory. We define Weil- smooth cohomology for varieties over local fields, and prove a duality theorem for the cohomology of G_m on a smooth, proper curve with a rational point. This last theorem is analogous to, and implies, a classical duality theorem for such curves.