UMD Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/3

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a given thesis/dissertation in DRUM.

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    3D Magnetic Imaging using SQUIDs and Spin-valve Sensors
    (2016) Jeffers, Alex; Wellstood, Frederick C; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    We have used 2 µm by 4 µm thin-film Cu-Mn-Ir spin-valve sensors and high Tc YBa2Cu3O7-x dc SQUIDs to take magnetic images of test samples with current paths that meander between 1 and 5 metallization layers separated by 1 µm to 10 µm vertically. I describe the development and performance of a 3D magnetic inverse for reconstructing current paths from a magnetic image. I present results from this inverse technique that demonstrate the reconstruction of the 3D current paths from magnetic images of samples. This technique not only maps active current paths in the sample but also extracts key parameters such as the layer-to-layer separations. When imaging with 2 µm by 4 µm spin-valve sensors I typically applied currents of 1 mA at 95 kHz and achieved system noise of about 200 nT for a 3 ms averaging time per pixel. This enabled a vertical resolution of 1 µm and a lateral resolution of 1 µm in the top layers and 3 µm in the bottom layer. For our roughly 30 µm square SQUID sensors, I typically applied currents of 1 mA at 5.3 kHz, and achieved system noise of about 200 pT for a 3 ms averaging time per pixel. The higher sensitivity compared to the spin-valve sensor allowed me to resolve more deeply buried current paths.