Mechanical Engineering Theses and Dissertations
Permanent URI for this collectionhttp://hdl.handle.net/1903/2795
Browse
4 results
Search Results
Item DATA-DRIVEN STUDIES OF TRANSIENT EVENTS AND APERIODIC MOTIONS(2019) Wang, Rui; Balachandran, Balakumar; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The era of big data, high-performance computing, and machine learning has witnessed a paradigm shift from physics-based modeling to data-driven modeling across many scientific fields. In this dissertation work, transient events and aperiodic motions of complex nonlinear dynamical system are studied with the aid of a data- driven modeling approach. The goal of the work has been to further the ability for future behavior prediction, state estimation, and control of related behaviors. It is shown that data on extreme waves can be used to carry out stability analysis and ascertain the nature of the transient phenomenon. In addition, it is demonstrated that a low number of soliton elements can be used to realize a rogue wave on the basis of nonlinear interactions amongst the basic elements. The pro- posed nonlinear phase interference model provides an appealing explanation for the formation of ocean extreme wave and related statistics, and a superior reconstruction of the Draupner wave event than that obtained on the basis of linear superposition. Chaotic data, another manifestation of aperiodic motions, which are obtained from prototypical ordinary differential and partial differential systems are considered and a neural machine is realized to predict the corresponding responses based on a limited training set as well to forecast the system behavior. A specific neural architecture, called the inhibitor mechanism, has been designed to enable chaotic time series forecasting. Without this mechanism, even the short-term predictions would be intractable. Both autonomous and non-autonomous dynamical systems have been studied to demonstrate the long-term forecasting possibilities with the de- veloped neural machine. For each dynamical system considered in this dissertation, a long forecasting horizon is achieved with a short historical data set. Furthermore, with the developed neural machine, one can relax the requirement of continuous historical data measurements, thus, providing for a more pragmatic approach than the previous approaches available in the literature. It is expected that the efforts of this dissertation work will lead to a better understanding of the underlying mechanism of transient and aperiodic events in complex systems and useful techniques for forecasting their future occurrences.Item ON THE IMPACT BETWEEN A WATER FREE SURFACE AND A RIGID STRUCTURE(2017) Wang, An; Duncan, James H; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)In this thesis, the impact between a water surface and a structure is addressed in two related experiments. In the first experiment, the impact of a plunging breaking wave on a partially submerged 2D structure is studied. The evolution of the water surface profiles are measured with with a cinematic laser-induced flourescence technique, while the pressure distribution on the wall is measured simultaneously with an array of fast-response pressure sensors. When the structure is placed at a particular streamwise location in the wave tank and the bottom surface of the structure is located 13.3~cm below the mean water level, a ``flip-through'' impact occurs. In this case, the water surface profile between the crest and the front face of the structure is found to shrink to a point as the wave approaches the structure without breaking. High acceleration of the contact point motion is observed in this case. When the bottom of the structure is located at the mean water level, high-frequency pressure oscillations are observed. These pressure oscillations are believed to be caused by air that is entrapped near the wave crest during the impact process. When the bottom of the structure is sufficiently far above the mean water level, the first contact with the structure is the impact between the wave crest and the bottom corner of the structure. This latter condition, produces the largest impact pressures on the structure. In the second experiment, the slamming of a flat plate on a quiescent water surface is studied. A two-axis high-speed carriage is used to slam a flat plate on the water surface with high horizontal and vertical velocity. The above-mentioned LIF system is used to measure the evolution of the free surface adjacent to the plate. Measurements are performed with the horizontal and vertical carriage speeds ranging from zero to 6 m/s and 0.6 to 1.2 m/s, respectively, and the plate oriented obliquely to horizontal. Two types of splash are found, a spray of droplets and ligaments that is ejected horizontally from under the plate in the beginning of the impact process and a highly sloped spray sheet that is ejected later when the high edge of the plate moves below the water surface. Detailed measurements of these features are presented and simple models are used to interpret the data.Item An Experimental Study of Water Surface Features in Response to Rain(2017) Liu, Ren; Duncan, James H.; Liu, Xinan; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Water surface features induced by the impact of raindrops on a deep water pool are studied experimentally in an artificial rain facility. Artificial rain is produced by a rain generator that consists of a rectangular tank with an array of 738 hypodermic needles attached to its bottom and that is mounted at various heights above a deep water pool. In this thesis, three rain intensities and four raindrop impact velocities are used while the diameters of raindrops remain approximately the same. For comparison with some of the results of the rain experiments, a set of single drop impacts on a quiescent water surface were also performed. In the single drop impact experiments, cinematic shadowgraph methods were used to measure the drop diameter (D) and velocity (V ) just before impact, to observe qualitatively the water surface response and to measure the height of the vertical water jet (stalk) that is typically part of the water surface response. It is found that the stalk height varies with impact Froude number (Fr = V^2/(gD), where g is the acceleration of gravity) in three different ways depending on the Froude number range. In the rain experiments, the drop diameters and velocities are measured with a cinematic shadowgraph technique while the temporal evolution of the surface profile along the center plane of the target water pool is measured with a cinematic Laser Induced Fluorescence (LIF) technique. The history of rain-induced stalk height and the profiles of the rain-induced surface waves are extracted at each instant in time. It is found that the stalk height varies considerably in the rain field and the average stalk heights are less than in cases with single drop impacting a quiescent surface at the same Froude number (Fr). The stalk height distribution correlates with the rain intensities rather than the impact velocity. Occasional bubble en- trainment was observed at the lowest raindrop impact velocity (Fr = 500) while bubble entrainment only occurred for Froude numbers greater than 1800 in single drop experiments. Furthermore, surface waves outside of the rain field propagate faster than that inside the rain field. Radar backscattering powers from raindrops, surface waves in front of the rain field and the water surface features inside a rain field are measured. The measurement results show that strong radar return signals are observed from the water surface inside the rain field while the radar return signals from both raindrops and the surface waves in front of the rain field are weak. The experimental results also show that the radar return intensity increases as the rain intensity increases from 85 to 300 mm/hr. In addition, it is found that the attenuation of the radar backscattering from the rain field is likely correlated with a high-water-content layer of secondary droplets generated in the rain field.Item Planning for Autonomous Operation of Unmanned Surface Vehicles(2016) Shah, Brual; Gupta, Satyandra K; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The growing variety and complexity of marine research and application oriented tasks requires unmanned surface vehicles (USVs) to operate fully autonomously over long time horizons even in environments with significant civilian traffic. The autonomous operations of the USV over long time horizons requires a path planner to compute paths over long distances in complex marine environments consisting of hundreds of islands of complex shapes. The available free space in marine environment changes over time as a result of tides, environmental restrictions, and weather. Secondly, the maximum velocity and energy consumption of the USV is significantly influenced by the fluid medium flows such as strong currents. Finally, the USV have to operate in an unfamiliar, unstructured marine environment with obstacles of variable dimensions, shapes, and motion dynamics such as other unmanned surface vehicles, civilian boats, shorelines, or docks poses numerous planning challenges. The proposed Ph.D. dissertation explores the above mentioned problems by developing computationally efficient path and trajectory planning algorithms that enables the long term autonomous operation of the USVs. We have developed a lattice-based 5D trajectory planner for the USVs operating in the environment with the congested civilian traffic. The planner estimates collision risk and reasons about the availability of contingency maneuvers to counteract unpredictable behaviors of civilian vessels. Secondly, we present a computationally efficient and optimal algorithm for long distance path planning in complex marine environments using A* search on visibility graphs defined over quad trees. Finally, we present an A* based path planning algorithm with newly developed admissible heuristics for computing energy efficient paths in environment with significant fluid flows. The effectiveness of the planning algorithms is demonstrated in the simulation environments by using systems identified dynamics model of the wave amplitude modular vessel (WAM-V) USV14.