Mechanical Engineering Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/2795

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Second Wave Mechanics
    (2024) Fabbri, Anthony; Herrmann, Jeffrey W; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The COVID-19 pandemic experienced very well-documented "waves" of the virus's progression, which can be analyzed to predict future wave behavior. This thesis describes a data analysis algorithm for analyzing pandemic behavior and other, similar problems. This involves splitting the linear and sinusoidal elements of a pandemic in order to predict the behavior of future "waves" of infection from previous "waves" of infection, creating a very long-term prediction of a pandemic. Common wave shape patterns can also be identified, to predict the pattern of mutations that have recently occurred, but have not become popularly known as yet, to predict the remaining future outcome of the wave. By only considering the patterns in the data that could possibly have acted in tandem to generate the observed results, many false patterns can be eliminated, and, therefore, hidden variables can be estimated to a very high degree of probability. Similar mathematical relationships can reveal hidden variables in other underlying differential equations.
  • Thumbnail Image
    Item
    Modeling Syndromic Surveillance and Outbreaks in Subpopulations
    (2020) Pettie, Christa; Herrmann, Jeffrey; Reliability Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    This research is motivated by the need to assist resource limited communities by enhancing the use of syndromic surveillance (SyS) systems and data. Public health agencies and academic researchers have developed and implemented SyS systems as a pattern recognition tool to detect a potential disease outbreak using pre-diagnostic data. SyS systems collect data from multiple types of sources: absenteeism records, over the counter medicine sales, chief complaints, web queries, and more. It could be expensive, however, to gather data from every available source; subsequently, gathering information about only some subpopulations may be a desirable option. This raises questions about the differences between subpopulation behavior and which subpopulations’ data would give the earliest, most accurate warning of a disease outbreak. To investigate the feasibility of using subpopulation data, this research will gather and organize SyS data by subpopulation (separated by population characteristics such as age or location) and identify how well the SyS data correlates to the real world disease progression. This research will study SyS how reports of Influenza-like-illness (ILI) in subpopulations represent the disease behavior. The first step of the research process is to understand how SyS is used in environments with varying levels of resources and what gaps are present in SyS modeling techniques. Various modeling techniques and applications are assessed, specifically the Susceptible Infected Recovered “SIR” model and associated modifications of that model. Through data analysis, well correlated subpopulations will be identified and compared to actual disease behavior and SyS data sets. A model referred to as ModSySIR will be presented that uses real world community data ideal for ease of use and implementation in a resource limited community. The highest level research objective is to provide a potential data analysis method and modeling approach to inform decision making for health departments using SyS systems that rely on fewer resources.