Second Wave Mechanics

Loading...
Thumbnail Image

Files

Publication or External Link

Date

2024

Citation

Abstract

The COVID-19 pandemic experienced very well-documented "waves" of the virus's progression, which can be analyzed to predict future wave behavior. This thesis describes a data analysis algorithm for analyzing pandemic behavior and other, similar problems. This involves splitting the linear and sinusoidal elements of a pandemic in order to predict the behavior of future "waves" of infection from previous "waves" of infection, creating a very long-term prediction of a pandemic. Common wave shape patterns can also be identified, to predict the pattern of mutations that have recently occurred, but have not become popularly known as yet, to predict the remaining future outcome of the wave. By only considering the patterns in the data that could possibly have acted in tandem to generate the observed results, many false patterns can be eliminated, and, therefore, hidden variables can be estimated to a very high degree of probability. Similar mathematical relationships can reveal hidden variables in other underlying differential equations.

Notes

Rights