MEES Theses and Dissertations
Permanent URI for this collectionhttp://hdl.handle.net/1903/19655
Browse
29 results
Search Results
Item Impact of salinity on morphology, growth, and pigment profiles of Scenedesmus obliquus HTB1 under ambient air and elevated CO2 (10%) conditions(2024) Jiao, Fanglue; Chen, Feng; Marine-Estuarine-Environmental Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Certain microalgal species tolerate high CO2 concentrations and proliferate faster with elevated CO2 than with ambient air. This feature makes them attractive for carbon sequestration, a tool for mitigating climate change due to increasing atmospheric CO2. Scenedesmus species are among these microalgae. Scenedesmus obliquus strain HTB1 is a microalgal strain isolated from the Baltimore Inner Harbor (brackish water) and has shown a faster growth with 10% CO2 compared to air. However, how HTB1 grows under different salinity and if the salt response is affected by elevated CO2 remains elusive. Two experiments were set up to address these questions. The first experiment tested the impact of salinity gradient (0, 17.5, 20, 22.5, 25, 27.5, and 30 ppt) on HTB1 under ambient air. With increasing salinity, HTB1 cells became smaller, and the cultures changed color from green to brown, yellowish brown, and then to pale white. The pigment analysis showed that HTB1 reduced several pigments (i.e. zeaxanthin, lutein, chlorophyll b) in response to salt stress. However, HTB1 produced higher concentrations of canthaxanthin under the salt stress. The growth of HTB1 decreased with increasing salinity and was inhibited when the salinity was greater than 22.5 ppt. In the second experiment, we compared the impact of salinity (0, 10, and 20 ppt) on HTB1 under air and 10% CO2, respectively. HTB1 cultures showed little color change with increasing salinity under 10% CO2. In contrast, the change of culture color from dark green to brown was observed with increasing salinity when HTB1 was grown with air. Interestingly, the growth of HTB1 was less inhibited with salt under 10% CO2 than with air, suggesting that elevated CO2 mitigates the salt stress of HTB1. Lutein and canthaxanthin increased with increasing salinity when HTB1 was grown with 10% CO2. Our results indicate that increased salinity affects the growth of Scenedesmus obliquus HTB1 more with air than with 10% CO2. This study provides insight into the impact of salt stress on algal morphology, growth, and pigment composition.Item MICROBIAL COMMUNITIES IN COASTAL ECOSYSTEMS(2024) Kim, Carol; Malkin, Sairah Y; Marine-Estuarine-Environmental Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Firstly, I examined microbial community succession along a chronosequence of constructed salt marshes using the Poplar Island restoration project site as a case study. By comparing 16S rRNA gene amplicon sequences across 6 constructed low marshes spanning a chronosequence of 1-16 years at Poplar Island (Chesapeake Bay) and a nearby natural reference marsh, I found strong evidence that the development of soil microbial communities is on a trajectory towards natural marsh conditions following marsh restoration with successional rates within timescales expected for soil development. Results from this study showed the value of microbial communities to serve as effective bioindicators for monitoring the recovery of microbially mediated biogeochemical processes in restored or newly constructed salt marshes, as well as potentially for assessing the marsh inundation period and by extension marsh health and resiliency. Secondly, I conducted a manipulation experiment to explore microbial communities associated with cable bacteria using RNA stable isotope probing (RNA-SIP). I traced the uptake of isotopically labeled bicarbonate and acetate in sediments with baseline and with stimulated cable bacteria activity, to test the hypothesis that cable bacteria activity can stimulate chemoautotrophic bacteria in anaerobic sediments. I used 16S rRNA sequencing to identify the active “incorporators” of bicarbonate (as a tracer of chemoautotrophy) and acetate (as a tracer of heterotrophy). I found that estuarine cable bacteria activity stimulated the chemoautotrophic activity of Gammaproteobacteria (Nitrosomonas, Thioalkalispira-Sulfurivermis) and Campylobacterota (Sulfurovum, Sulfurimonas) at anaerobic depths. This result is not explainable with conventional understanding of chemoautotrophic activity. Rather, this study contributes to the emerging concept that cable bacteria activity stimulates metabolic activities at suboxic sediment depths, potentially by serving as an electron sink for other microbes. Furthermore, I found that heterotrophic activity, measured as 13C-acetate assimilation into RNA, was stimulated amongst known chemoautotrophic sulfur oxidizers at depth, highlighting that metabolic flexibility, and specifically mixotrophy, may be widespread in complex natural sediment environments. Lastly, I characterized the composition and metabolic potential of microbial communities in estuarine sediment enriched with cable bacteria. By using metagenomic and 16S rRNA sequencing, I constructed 23 medium- to high-quality metagenome-assembled genomes (MAGs) that span across 9 phyla. I retrieved MAGs exhibiting mixotrophy and a range of capabilities for extracellular electron transport. This study revealed a diverse range of metabolically flexible communities of microbes that contribute to the biogeochemical cycling of carbon, nitrogen, and sulfur.Item Climate Change and Vibrio species: Investigation of Environmental Parameters Associated with Occurrence and Transmission(2023) Brumfield, Kyle David; Colwell, Rita R.; Marine-Estuarine-Environmental Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Climate change, associated with shifts in the geographical range of biological species, has become increasingly important in emergence and re-emergence of disease. Vibrio spp., native to aquatic ecosystems, are commonly associated with aquatic invertebrates, notably crustaceans and zooplankton. Some species of the genus Vibrio cause infection in humans, of which Vibrio cholerae, the etiological agent of pandemic cholera, is the most documented. Pathogenic non-cholera Vibrio spp., namely Vibrio parahaemolyticus and Vibrio vulnificus, cause gastroenteritis and also septicemia and extra-intestinal infections. They are responsible for a large number of public health emergencies in developed countries, including the United States. As sea temperatures rise and salinity profiles are altered, a pattern of poleward spreading of non-cholera Vibrio spp. has been observed globally, demonstrating significant geographic expansion of these bacterial populations, corroborated by an associated increase in the number of reported vibriosis cases. Since Vibrio spp., including pathogenic vibrios, play an important role in the degradation of polymeric substances, such as chitin, and in biogeochemical processes, they cannot be eradicated. Hence, routine monitoring and an early warning system are needed for public health preparedness. Since the 1960’s, ongoing research has focused on environmental factors linked with occurrence and distribution of clinically relevant Vibrio spp. and their role in disease transmission. We have reported that lack of, or damage to, water, sanitation, and hygiene (WASH) infrastructure, coupled with elevated air temperatures, and followed by above average rainfall promotes exposure of a population to contaminated water, hence increases the risk of an outbreak of cholera. Global predictive intelligence models applicable to diseases caused by non-cholera Vibrio spp. are in development. The research reported here describes results of intensive sampling to detect and characterize Vibrio spp. in the Chesapeake Bay, Maryland, and the Florida Gulf Coast, the latter an area significantly impacted by Hurricane Ian, September 2022, with a spike in confirmed vibriosis cases and deaths during weeks following the storm. Results of this study provide confirmation of environmental predictors for Vibrio spp. and document long-term increase and extended seasonality of Vibrio populations in the Chesapeake Bay. Using satellite remote sensing data, we demonstrate the impact of extreme heat, precipitation, and other key environmental and geophysical factors (e.g., temperature, salinity, and chlorophyll) on prevalence of pathogenic Vibrio spp. in aquatic systems. This study lays the groundwork for a predictive intelligence system for Vibrio spp. and other pathogens under varying climatic scenarios.Item BIOPROSPECTING MARINE ACTINOMYCETES FOR NOVEL ANTI-TUBERCULOSIS DRUGS(2022) Tizabi, Daniela Rose; Hill, Russell T; Marine-Estuarine-Environmental Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Mycobacterium tuberculosis (M. tb), the causative agent of the infectious lung disease tuberculosis (TB), is estimated to infect approximately 1.7 billion people worldwide. This pathogen was responsible for more than 1.5 million deaths in 2020, and is likely to remain a global threat for many years to come due to the rising incidence of antibiotic resistance, as well as dramatic setbacks in treatment due to the ongoing COVID-19 pandemic. There is an urgent demand for novel therapeutics to treat the disease through unique mechanisms of action. In the search for these drugs, a novel collection of 101 marine actinomycetes previously isolated from a Caribbean giant barrel sponge Xestospongia muta was investigated for their ability to inhibit M. tb growth. Thirteen novel strains of Micrococcus, Micromonospora, Brevibacterium, and Streptomyces were identified as consistently producing extracts that inhibit M. tb in a dose-dependent manner. After sequencing the genomes of these strains, a comparative analysis between three assembly algorithms (SPAdes, A5-miseq, Shovill) was performed to determine which program yielded the best assembly from Illumina MiSeq data for biosynthetic gene cluster (BGC) mining. Upon characterizing the biosynthetic potential of each strain, two isolates generating highly potent extracts – Micrococcus sp. strain R8502A1 and Micromonospora sp. strain R45601 – were selected for further analysis through a dual genomics and chemistry-enabled approach. No compounds with obvious anti-TB activity were detected in the genome of Micrococcus sp. strain R8502A1, suggesting production of an elusive and novel anti-TB compound through a cryptic pathway. A comprehensive examination of all BGC-associated domains was conducted to evaluate possible biosynthetic pathways linked to the anti-TB activity observed. The active component of the Micrococcus extract was further isolated with high performance liquid chromatography (HPLC) and is under investigation with liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR). In contrast, a BGC with 94% similarity to the selective and potent but poorly soluble anti-TB compound diazaquinomycin H/J was identified in the genome of Micromonospora sp. strain R45601, suggesting production of a chemical analog. LC-MS detected four peaks of interest, two of which are associated with mass-to-charge (m/z) values that do not correlate with any previously identified diazaquinomycin analogs. This analysis has identified at least two potentially novel anti-TB compounds, supporting continued investigation into sponge-associated marine actinomycetes for novel therapeutics.Item SOIL MICROBIAL COMMUNITIES IN URBAN STREAM RESTORATIONS AND FORESTED SITES IN FAIRFAX COUNTY, VA(2022) Wood, Lindsay; Yarwood, Stephanie; Marine-Estuarine-Environmental Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Urbanization is rapidly occurring worldwide and can increase hydrological flows into urban streams and alter forest structure and soil properties. Stream restoration projects are ongoing in Fairfax County, Virginia in order to reconnect the channel to the floodplain and increase nutrient removal via microbially mediated processes. Ecological assessment of urban forests is also ongoing to understand the ecosystem services that urban forests provide. Using Illumina sequencing and qPCR, the bacterial and fungal communities were analyzed between stream riparian zones and reference sites, and between different forest qualities. Fungal communities differed significantly after stream restoration and between forest quality types. qPCR was also used to quantify denitrifying genes between restoration types. Post restoration sites had higher abundances of nirS, while reference sites were higher in nirK. The high quality forest sites were most colonized by arbuscular mycorrhizal fungi and were highest in ectomycorrhizal fungal sequences.Item MICROBIAL BIOFILMS ON MICROPLASTICS: A LOOK INTO THE ESTUARINE PLASTISPHERE OF THE CHESAPEAKE BAY(2021) Sosa , Ana Paula; Chen, Feng; Marine-Estuarine-Environmental Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Microplastics are plastic particles that are smaller than 5 millimeters and are often found as pollution in our waterways. These polymer particles are globally distributed and are a direct result of human activity. Because of their rigidity and durability, microplastics are an ideal substrate for enhanced microbial growth and biofilm development. While microplastics have been studied in various contexts, only few studies have characterized the microbial communities on different types of plastic particles, but no study has been done in the estuarine water. In this study, we exposed three different types of plastics (polypropylene, polystyrene, and polylactic acid) to the water of Baltimore’s Inner Harbor, along with a non-plastic glass control. We used both in situ and in vitro incubations to understand the development of biofilm communities on microplastics. Microbial communities were analyzed based on the 16S rRNA gene sequences. We found that microbial composition on biofilm is distinct from that in the surrounding water, and different microplastic types have a minor impact on the composition of biofilm communities. The similarity between microbial communities on plastic and non-plastic particles suggests that surface supports rather than material types could be more critical for biofilm formation. Succession of microbial communities on the microplastics and interesting bacterial groups were described. Isolation and microscopic observations were also applied in this study. The presence of phototrophic organisms like filamentous cyanobacteria and Auxenochlorella on microplastic biofilms is interesting, and little is known about their contribution to carbon fixation in the ocean. Biofilms formed on microplastic surfaces could potentially affect the ecosystems via different mechanisms, including local nutrient cycling and the transportation of invasive or harmful species. As plastic production and mismanagement continues to be pervasive in our society, it is paramount that we include biofilm development into the framework of general ecology in order to truly understand the impact of plastic pollution and safeguard our ecosystems.Item Viromics and biogeography of estuarine virioplankton(2021) Sun, Mengqi; Chen, Feng; Marine-Estuarine-Environmental Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Viruses are the most abundant biological entity in the ocean, and they can influence microbial mortality, evolution and biogeochemical cycles in marine ecosystems. Virioplankton communities in oceans have been studied extensively using viral metagenomics (viromics), but the estuarine viromes remain relatively unexplored. Estuaries are a complex and dynamic ecosystem. My dissertation is dedicated to understanding the composition and distribution of the virioplankton community in the Delaware Bay and Chesapeake Bay by investigating 16 viromes collected from these two bays. A total of 26,487 viral populations (contigs > 5kb) were identified in the two bays, establishing a high quality viromic dataset. The vast majority of the dominant viral populations are unclassified viruses. Viral sequences obtained from marine single cell genomes or long read single molecule sequencing comprised 13 of the top 20 most abundant viral populations, suggesting that we are still far from understanding the diversity of viruses in estuaries. Abundant viral populations (top 5,000) are significantly different between the Delaware Bay and Chesapeake Bay, indicating a strong niche adaptation of the viral community to each estuary. Surprisingly, no clear spatiotemporal patterns were observed for the viral community based on water temperature and salinity. The composition of known viruses (i.e. phages infecting Acinetobacter, Puniceispirillum, Pelagibacter, Synechococcus, Prochlorococcus, etc.) appeared to be relatively consistent across a wide range of salinity gradients and different seasons. Overall, the estuarine viral community is distinct from that in the ocean according to the composition of known viruses. N4-like viruses belong to a newly established viral family and have been isolated from diverse bacterial groups. Marine N4-like viruses were first found in the Chesapeake Bay, but little is known about their biogeographic pattern in the estuarine environment. N4-like viruses were confirmed to be rare in the estuary, and relatively more abundant in the samples from lower water temperature. Viruses which infect SAR11 bacteria (pelagiphage) are one of most abundant viral groups in the open ocean. We found that the abundance and community profile of pelagiphage in the estuaries is similar to that in the open ocean, and has no correlation with environmental factors.Item TWO MARINE SPONGES, LENDENFELDIA CHONDRODES AND HYMENIACIDON HELIOPHILA, AND THEIR MICROBIAL SYMBIONTS: ROLES IN MARINE PHOSPHORUS CYCLING.(2021) Jonas, Lauren; Hill, Russell; Marine-Estuarine-Environmental Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Marine sponges have emerged as major players within coral reef biogeochemical cycles, facilitating intake and release of carbon, nitrogen, and phosphorus. The majority of studies have investigated the role of sponges in transforming dissolved carbon and nitrogen; however, the same breadth of insights has not been extended to phosphorus. This study uses 32P-labeled orthophosphate and ATP to determine that two marine sponges, Lendenfeldia chondrodes and Hymeniacidon heliophila, both rapidly take up ambient dissolved inorganic phosphate and dissolved organic phosphorus. Subsequent genetic analysis and chemical extraction showed that sponge symbionts store phosphorus in the form of energy-rich polyphosphate (poly-P). L. chondrodes, a sponge from oligotrophic habitats and with a microbiome dominated by cyanobacterial symbionts, stores more phosphorus as poly-P (6–8%) than H. heliophila (0.55%), a eutrophic sponge with low cyanobacterial abundance. This work adds new insights to the roles of the sponge holobiont in cycling the crucial element, phosphorus.Item CABLE BACTERIA AND THEIR MICROBIAL ASSOCIATIONS IN LAB-INCUBATED SEDIMENT FROM CHESAPEAKE BAY(2021) Liau, Pinky; Malkin, Sairah Y.; Marine-Estuarine-Environmental Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Cable bacteria (Ca. Electrothrix) are long, filamentous, multicellular bacteria that grow in marine sediments and couple sulfur oxidation to oxygen reduction over centimeter-scale distances via an enigmatic long-distance electron transport mechanism. They can grow to tremendous densities and strongly modify the sediment environment in multiple ways, including efficient sulfide removal, stimulation of sulfate reduction, and alteration of porewater pH distribution. In this thesis, I asked if cable bacteria can influence the sympatric microbial community composition and activity, using a time-series manipulation experiment. As anticipated, based on their influence on sediment geochemistry, cable bacteria growth was associated with the stimulation of several genera of sulfate-reducing bacteria, and a sulfur-disproportionating genus (Desulfocapsa). I observed a positive relationship with the OM27 clade of the predatory Bdellovibrionota. Finally, I detected evidence of interaction with two chemoautotrophic sulfur oxidizers (Thiogranum, Sedimenticola), which are good candidates for further examination of potential electrical connection with cable bacteria.Item THE PROBIOTICS OF BIOFUEL: A METAGENOMIC STUDY OF MICROALGAE GROWN FOR FUEL PRODUCTION(2018) Major, Samuel; Hill, Russell T; Marine-Estuarine-Environmental Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Ponds in Frederick, MD were fertilized with chicken manure to increase the nutrient load in the water and stimulate microalgal growth. Nutrient analyses indicate that fertilization results in significant increases in the DOC, TDN, and TDP. The bacterial and eukaryotic microalgal communities were analyzed using 16S and 18S rRNA gene sequencing, respectively. Communities were analyzed pre-fertilization and for 15 days following fertilization. Molecular data reveals a decrease in diversity as microalgal blooms form. The microalgal density increased following fertilization, with enrichment for the Chlamydomonadales order. Prior to fertilization the bacterial communities were dominated by five phyla: Actinobacteria, Bacteroidetes, Cyanobacteria, Proteobacteria, and Verrucomicrobia. Dominant bacterial genera post-fertilization included Flavobacterium, Limnohabitans, and Polynucleobacter. Bacteria isolated from the ponds were screened for effects on Scenedesmus sp. HTB1 to identify bacteria that either enhance or inhibit microalgal growth. The growth-promoting bacteria were closely related to bacteria found to be enriched during microalgal bloom formation.
- «
- 1 (current)
- 2
- 3
- »