Aerospace Engineering Theses and Dissertations
Permanent URI for this collectionhttp://hdl.handle.net/1903/2737
Browse
3 results
Search Results
Item TOWARDS AUTONOMOUS VERTICAL LANDING ON SHIP-DECKS USING COMPUTER VISION(2022) Shastry, Abhishek; Datta, Anubhav; Chopra, Inderjit; Aerospace Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The objective of this dissertation is to develop and demonstrate autonomous ship-board landing with computer vision. The problem is hard primarily due to the unpredictable stochastic nature of deck motion. The work involves a fundamental understanding of how vision works, what are needed to implement it, how it interacts with aircraft controls, the necessary and sufficient hardware, and software, how it differs from human vision, its limits, and finally the avenues of growth in the context of aircraft landing. The ship-deck motion dataset is provided by the U.S. Navy. This data is analyzed to gain fundamental understanding and is then used to replicate stochastic deck motion in a laboratory setting on a six degrees of freedom motion platform, also called Stewart platform. The method uses a shaping filter derived from the dataset to excite the platform. An autonomous quadrotor UAV aircraft is designed and fabricated for experimental testing of vision-based landing methods. The entire structure, avionics architecture, and flight controls for the aircraft are completely developed in-house. This provides the flexibility and fundamental understanding needed for this research. A fiducial-based vision system is first designed for detection and tracking of ship-deck. This is then utilized to design a tracking controller with the best possible bandwidth to track the deck with minimum error. Systematic experiments are conducted with static, sinusoidal, and stochastic motions to quantify the tracking performance. A feature-based vision system is designed next. Simple experiments are used to quantitatively and qualitatively evaluate the superior robustness of feature-based vision under various degraded visual conditions. This includes: (1) partial occlusion, (2) illumination variation, (3) glare, and (4) water distortion. The weight and power penalty for using feature-based vision are also determined. The results show that it is possible to autonomously land on ship-deck using computer vision alone. An autonomous aircraft can be constructed with only an IMU and a Visual Odometry software running on stereo camera. The aircraft then only needs a monocular, global shutter, high frame rate camera as an extra sensor to detect ship-deck and estimate its relative position. The relative velocity however needs to be derived using Kalman filter on the position signal. For the filter, knowledge of disturbance/motion spectrum is not needed, but a white noise disturbance model is sufficient. For control, a minimum bandwidth of 0.15 Hz is required. For vision, a fiducial is not needed. A feature-rich landing area is all that is required. The limits of the algorithm are set by occlusion(80\% tolerable), illumination (20,000 lux-0.01 lux), angle of landing (up to 45 degrees), 2D nature of features, and motion blur. Future research should extend the capability to 3D features and use of event-based cameras. Feature-based vision is more versatile and human-like than fiducial-based, but at the cost of 20 times higher computing power which is increasingly possible with modern processors. The goal is not an imitation of nature but derive inspiration from it and overcome its limitations. The feature-based landing opens a window towards emulating the best of human training and cognition, without its burden of latency, fatigue, and divided attention.Item An Experimental and Analytical Investigation of Hydrogen Fuel Cells for Electric Vertical Take-Off and Landing (eVTOL) Aircraft(2019) Ng, Wanyi; Datta, Anubhav; Aerospace Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The objective of this thesis is a comprehensive investigation of hydrogen fuel cells for electric vertical take-off and landing (eVTOL) aircraft. The primary drawback of battery powered eVTOL aircraft is their poor range and endurance with practical payloads. This work uses simulation and hardware testing to examine the potential of hydrogen fuel cells to overcome this drawback. The thesis develops steady state and transient models of fuel cells and batteries, and validates the models experimentally. An equivalent circuit network model was able to capture the waveforms and magnitudes of voltage as a function of current. Temperature and humidity corrections were also included. Examination of the results revealed that the transient behavior of batteries and fuel stacks are significant primarily shortly after startup of the fuel stack and at the limiting ranges of high and low power; for a nominal operating power and barring faults, steady state models were adequate. This work then demonstrates fuel cell and battery power sharing in regulated and unregulated parallel configurations. It details the development of a regulated architecture, which controls power sharing, to achieve a reduction in power plant weight. Finally, the thesis outlines weight models of motors, batteries, and fuel cells needed for eVTOL sizing, and carries out sizing analysis for on-demand urban air taxi missions of three different distances -- 50, 75, and 150~mi of cruise and 5~min total hover time. This revealed that for ranges within 75 mi, a light weight (5000-6000~lb gross weight) all-electric tilting proprotor configuration achieves a practical payload (500~lb or more) with current levels of battery specific energy (150~Wh/kg) if high burst C-rate batteries are available (4-10~C for 2.5~min). Either a battery-only or battery-fuel cell (B-FC) hybrid power plant is ideal depending on the range of the mission: For inter-city ranges (beyond approximately 50~mi), the mission is impossible with batteries alone, and fuel cells are a key enabling technology; a VTOL aircraft with a B-FC hybrid powerplant, an aircraft with 6200~lb gross take-off weight, 10~lb/ft$^2$ disk loading, and 10~C batteries, could be sized to carry a payload of 500~lb for a range of 75~mi. For this inter-city range, the research priority centers of fuel cells, as they appear to far surpass future projections of Li-ion battery energy levels based on performance numbers (at a component level), high weight fraction of hydrogen storage due to the short duration of eVTOL missions, and lack of a compressor due to low-altitude missions, with the added benefit of ease of re-fueling. However, for an intra-city mission (within approximately 50~mi), the B-FC combination provides no advantage over a battery-only powerplant; a VTOL aircraft with a battery-only powerplant with the same weight and disk loading as before, and 4~C batteries, can carry a payload of 800~lb for a range of 50~mi. For this mission range, improving battery energy density is the priority.Item Wave impedance selection for passivity-based bilateral teleoperation(2016) D'Amore, Nicholas; Akin, David L; Aerospace Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)When a task must be executed in a remote or dangerous environment, teleoperation systems may be employed to extend the influence of the human operator. In the case of manipulation tasks, haptic feedback of the forces experienced by the remote (slave) system is often highly useful in improving an operator's ability to perform effectively. In many of these cases (especially teleoperation over the internet and ground-to-space teleoperation), substantial communication latency exists in the control loop and has the strong tendency to cause instability of the system. The first viable solution to this problem in the literature was based on a scattering/wave transformation from transmission line theory. This wave transformation requires the designer to select a wave impedance parameter appropriate to the teleoperation system. It is widely recognized that a small value of wave impedance is well suited to free motion and a large value is preferable for contact tasks. Beyond this basic observation, however, very little guidance exists in the literature regarding the selection of an appropriate value. Moreover, prior research on impedance selection generally fails to account for the fact that in any realistic contact task there will simultaneously exist contact considerations (perpendicular to the surface of contact) and quasi-free-motion considerations (parallel to the surface of contact). The primary contribution of the present work is to introduce an approximate linearized optimum for the choice of wave impedance and to apply this quasi-optimal choice to the Cartesian reality of such a contact task, in which it cannot be expected that a given joint will be either perfectly normal to or perfectly parallel to the motion constraint. The proposed scheme selects a wave impedance matrix that is appropriate to the conditions encountered by the manipulator. This choice may be implemented as a static wave impedance value or as a time-varying choice updated according to the instantaneous conditions encountered. A Lyapunov-like analysis is presented demonstrating that time variation in wave impedance will not violate the passivity of the system. Experimental trials, both in simulation and on a haptic feedback device, are presented validating the technique. Consideration is also given to the case of an uncertain environment, in which an a priori impedance choice may not be possible.