Electrical & Computer Engineering Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/2765

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    NEW APPROACHES FOR ANALYZING SYSTEMS WITH HISTORY-DEPENDENT EFFICIENCY
    (2020) Lin, Michael; La, Richard J; Martins, Nuno C; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    In my dissertational work, I propose two novel models for analyzing systems in which the operational efficiency depends on the past history, e.g., systems with human-in-the-loop and energy harvesting sensors. First, I investigate a queuing system with a single server that serves multiple queues with different types of tasks. The server has a state that is affected by the current and past actions. The task completion probability of each kind of task is a function of the server state. A task scheduling policy is specified by a function that determines the probability of assigning a task to the server. The main results with multiple types of tasks include: (i) necessary and sufficient conditions for the existence of a randomized stationary policy that stabilizes the queues; and (ii) the existence of threshold type policies that can stabilize any stabilizable system. For a single type system, I also identify task scheduling policies under which the utilization rate is arbitrarily close to that of an optimal policy that minimizes the utilization rate. Here, the utilization rate is defined to be the long-term fraction of time the server is required to work. Second, I study a remote estimation problem over an activity packet drop link. The link undergoes packet drops and has an (activity) state that is influenced by past transmission requests. The packet-drop probability is governed by a given function of the link's state. A scheduler determines the probability of a transmission request regarding the link's state. The main results include: (i) necessary and sufficient conditions for the existence of a randomized stationary policy that stabilizes the estimation error in the second-moment sense; and (ii) the existence of deterministic policies that can stabilize any stabilizable system. The second result implies that it suffices to search for deterministic strategies for stabilizing the estimation error. The search can be further narrowed to threshold policies when the function for the packet-drop probability is non-decreasing.
  • Item
    Age of Information and Energy Efficiency in Communication Networks
    (2015) Dutra da Costa, Maice; Ephremides, Anthony; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    This dissertation focuses on two important aspects of communication systems, namely energy efficiency and age of information. Both aspects have received much less attention than traditional performance metrics, such as throughput and delay. The need to improve the energy efficiency in communication networks is apparent, given the high demand for power consuming applications to be implemented in devices with limited energy supplies. Additionally, improvements in energy efficiency are encouraged by possible reductions in network operation costs, and by the increasing awareness of the environmental impact caused by the information and communication technologies. In this dissertation, energy efficiency is studied in the context of a cognitive wireless network, in which users have different priorities to access the network resources, possibly interfering and cooperating among themselves. A new parametrization is proposed to characterize performance trade-offs associated with energy efficiency for non-cooperative and cooperative network models. Additionally, a game theoretic model is proposed to study resource allocation in a cooperative cognitive network, accounting for energy efficiency in the utility functions. Age of information is a relatively new concept, which aims to characterize the timeliness of information. It is relevant to any system concerned with timeliness of information, and particularly relevant when information is used to make decisions, but the value of the information is degraded with time. This is the case in many applications of communications and control systems. In this dissertation, the age of information is first investigated for status update communication systems. The status updates are samples of a random process under observation, transmitted as packets, which also contain the time stamp to identify when the sample was generated. The age of information at the destination node is the time elapsed since the last received update was generated. The status update systems are modeled using queuing theory. We propose models for status update systems capable of managing the packets before transmission, aiming to avoid wasting network resources with the transmission of stale information. In addition to characterizing the average age, we propose a new metric, called peak age, which provides information about the maximum value of the age, achieved immediately before receiving an update. We also propose a new framework, based on the concept of age of information, to analyze the effect of outdated Channel State Information (CSI) on the performance of a communication link in which the source node acquires the CSI through periodic feedback from the destination node. The proposed framework is suitable to analyze the trade-off between performance and timeliness of the CSI, which is a fundamental step to design efficient adaptation functions and feedback protocols.