Electrical & Computer Engineering Theses and Dissertations
Permanent URI for this collectionhttp://hdl.handle.net/1903/2765
Browse
35 results
Search Results
Item SYMMETRIC-KEY CRYPTOGRAPHY AND QUERY COMPLEXITY IN THE QUANTUM WORLD(2024) Bai, Chen; Katz, Jonathan; Alagic, Gorjan; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Quantum computers are likely to have a significant impact on cryptography. Many commonly used cryptosystems will be completely broken once large quantum computers are available. Since quantum computers can solve the factoring problem in polynomial time, the security of RSA would not hold against quantum computers. For symmetric-key cryptosystems, the primary quantum attack is key recovery via Grover search, which provides a quadratic speedup. One way to address this is to double the key length. However, recent results have shown that doubling the key length may not be sufficient in all cases. Therefore, it is crucial to understand the security of various symmetric-key constructions against quantum attackers. In this thesis, we give the first proof of post-quantum security for certain symmetric primitives. We begin with a fundamental block cipher, the Even-Mansour cipher, and the tweakable Even-Mansour construction. Our research shows that both are secure in a realistic quantum attack model. For example, we prove that 2^{n/3} quantum queries are necessary to break the Even-Mansour cipher. We also consider the practical applications that our work implies. Using our framework, we derive post-quantum security proofs for three concrete symmetric-key schemes: Elephant (an Authenticated Encryption (AE) finalist of NIST’s lightweight cryptography standardization effort), Chaskey (an ISO-standardized Message Authentication Code), and Minalpher (an AE second-round candidate of the CAESAR competition). In addition, we consider the two-sided permutation inversion problem in the quantum query model. In this problem, given an image y and quantum oracle access to a permutation P (and its inverse oracle), the goal is to find its pre-image x such that P(x)=y. We prove an optimal lower bound \Omega(\sqrt{2^n}) for this problem against an adaptive quantum adversary. Moreover, we apply our lower bound above to show that a natural encryption scheme constructed from random permutations is secure against quantum attacks.Item Nonlinear and Stochastic Dynamics of Optoelectronic Oscillators(2024) Ha, Meenwook; Chembo, Yanne K.; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Optoelectronic oscillators (OEOs) are nonlinear, time-delayed and self-sustained microwave photonic systems capable of generating ultrapure radiofrequency (RF) signals with extensive frequency tunabilities. Their hybrid architectures, comprising both optical and electronic paths, underscore their merits. One of the most notable points of OEOs can be unprecedentedly high quality factors, achieved by storing optical energies for RF signal generations. Thanks to their low phase noise and broad frequency tunabilities, OEOs have found diverse applications including chaos cryptography, reservoir computing, radar communications, parametric oscillator, clock recovery, and frequency comb generation. This thesis pursues two primary objectives. Firstly, we delve into the nonlinear dynamics of various OEO configurations, elucidating their universal behaviors by deriving corresponding envelope equations. Secondly, we present a stochastic equation delineating the dynamics of phases and explore the intricacies of the phase dynamics. The outputs of OEOs are defined in their RF ports, with our primary focus directed towards understanding the dynamics of these RF signals. Regardless of their structural complexities, we employ a consistent framework to explore these dynamics, relying on the same underlying principles that determine the oscillation frequencies of OEOs. To comprehend behaviors of OEOs, we analyze the dynamics of a variety of OEOs. For simpler systems, we can utilize the dynamic equations of bandpass filters, whereas more complex physics are required for expressing microwave photonic filtering. Utilizing an envelope approach, which characterizes the dynamics of OEOs in terms of complex envelopes of their RF signals, has proven to be an effective method for studying them. Consequently, we derive envelope equations of these systems and research nonlinear behaviors through analyses such as investigating bifurcations, stability evaluations, and numerical simulations. Comparing the envelope equations of different models reveals similarities in their dynamic equations, suggesting that their dynamics can be governed by a generalized universal form. Thus, we introduce the universal equation, which we refer to as the universal microwave envelope equation and conduct analytical investigations to further understand its implications. While the deterministic universal equation offers a comprehensive tool for simultaneous exploration of various OEO dynamics, it falls short in describing the stochastic phase dynamics. Our secondary focus lies in investigating phase dynamics through the implementation of a stochastic approach, enabling us to optimize and comprehend phase noise performance effectively. We transform the deterministic universal envelope equation into a stochastic delay differential form, effectively describing the phase dynamics. In our analysis of the oscillators, we categorize noise sources into two types: additive noise contribution, due to random environmental and internal fluctuations, and multiplicative noise contribution, arising from noisy loop gains. The existence of the additive noise is independent of oscillation existence, while the multiplicative noise is intertwined with the noisy loop gains, nonlinearly mixing with signals above the threshold. Therefore, we investigate both sub- and above-threshold regimes separately, where the multiplicative noise can be characterized as white noise and colored noise in respective regimes. For the above-threshold regime, we present the stochastic phase equation and derive an equation for describing phase noise spectra. We conduct thorough investigations into this equation and validate our approaches through experimental verification. In the sub-threshold regime, we introduce frameworks to experimentally quantify the noise contributions discussed in the above-threshold part. Since no signal is present here and the oscillator is solely driven by the stochastic noise, it becomes feasible to reverse-engineer the noise powers using a Fourier transform formalism. Here, we introduce a stochastic expression written in terms of the real-valued RF signals, not the envelopes, and the transformation facilitates the expressions of additive and multiplicative noise contributions as functions of noisy RF output powers. The additive noise can be defined by deactivating the laser source or operating the intensity modulator at the minimum transmission point, given its independence from the loop gains. Conversely, the expression for the multiplicative noise indicates a dependence on the gain, however, experimental observations suggest that its magnitude may remain relatively constant beyond the threshold.Item Quantum and Stochastic Dynamics of Kerr Microcombs(2024) Liu, Fengyu; Chembo, Yanne K.; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Kerr microcombs are sets of discrete, equidistant spectral lines and are typically generated by pumping a high-quality factor optical resonator with a continuous- or pulse-wave resonant laser. They have emerged as one of the most important research topics in photonics nowadays, with applications related to spectroscopy, sensing, aerospace, and communication engineering. A key characteristic of these microcombs is the threshold pump power. Below the threshold, two pump photons are symmetrically up- and down-converted as twin photons via spontaneous four-wave mixing, and they can be entangled across up to a hundred eigenmodes. These chipscale, high-dimensional, and room-temperature systems are expected to play a major role in quantum engineering. Above the threshold, the four-wave mixing process is stimulated, ultimately leading to the formation of various types of patterns in the spatio-temporal domain, which can be extended (such as roll patterns), or localized (bright or dark solitons). The semiclassical dynamics of Kerr microcombs have been studied extensively in the last ten years and the deterministic characteristics are well understood. However, the quantum dynamics of the twin-photon generation process, and the stochastic dynamics led by the noise-driven fluctuations, are still not so clear. In the first part of our investigation, we introduce the theoretical framework to study the semiclassical dynamics of the Kerr microcombs based on the slowly varying envelope of the intracavity electrical fields. Two equivalent models -- the coupled-mode model and the Lugiato-Lefever model are used to analyze the spectro- and spatio-temporal dynamics, respectively. These models can determine the impact of key parameters on the Kerr microcomb generation process, such as detuning, losses, and pump power, as well as critical values of the system, such as threshold power. Various types of patterns and combs can be observed through simulations that follow experimental parameters. Furthermore, we show an eigenvalue analysis method to determine the stability of the microcomb, and this method is applied to an unstable microcomb solution to understand the generation of subcombs surrounding the primary comb. In the second and third parts, we investigate a stochastic model where noise is added to the coupled-mode equations governing the microcomb dynamics to monitor the influence of random noise on the comb dynamics. We find the model with additive Gaussian white noise allows us to characterize the noise-induced broadening of spectral lines and permits us to determine the phase noise spectra of the microwaves generated via comb photodetection. Our analysis indicates that the low-frequency part of the phase noise spectra is dominated by pattern drift while the high-frequency part is dominated by pattern deformation. The dynamics of the Kerr microcomb with multiplicative noises, including thermal and photothermal fluctuations, are also investigated in the end. We propose that the dynamics of the noise can be included in the simulation of stochastic dynamics equations, introduce the methods to solve the dynamics of the noise, and study a quiet point method for phase noise reduction. In the fourth part, we use canonical quantization to obtain the quantum dynamics for Kerr microcombs generated by spontaneous four-wave mixing below the threshold and develop the study of them using frequency-bin quantum states. We introduce a method to find the quantum expansion of the output state and explore the properties of the eigenkets. A theoretical framework is also developed to obtain explicit solutions for density operators of quantum microcombs, which allows us to obtain their complete characterization, as well as for the analytical determination of various performance metrics such as fidelity, purity, and entropy. Finally, we describe a quantum Kerr microcomb generator with a pulse-wave laser and propose the time-bin entangled states generated by it.Item Dynamics and applications of long-distance laser filamentation in air(2024) Goffin, Andrew; Milchberg, Howard; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Femtosecond laser pulses with sufficient power will form long, narrow high-intensity light channels in a propagation medium. These structures, called “filaments”, form due to nonlinear self-focusing collapse in a runaway process that is arrested by a mechanism that limits the peak intensity. For near-infrared pulses in air, the arrest mechanism is photoionization of air molecules and the resulting plasma-induced defocusing. The interplay between plasma-induced defocusing and nonlinear self-focusing enables high-intensity filament propagation over long distances in air, much longer than the Rayleigh range (~4 cm) corresponding to the ~200 µm diameter filament core. In this thesis, the physics of atmospheric filaments is studied in detail along with several applications. Among the topics of this thesis: (1) Using experiments and simulations, we studied the pulse duration dependence of filament length and energy deposition in the atmosphere, revealing characteristic axial oscillations intimately connected to the delayed rotational response of air molecules. This measurement used a microphone array to record long segments of the filament propagation path in a single shot. These results have immediate application to the efficient generation of long air waveguides. (2) We investigated the long-advertised ability of filaments to clear fog by measuring the dynamics of single water droplets in controlled locations near a filament. We found that despite claims in the literature that droplets are cleared by filament-induced acoustic waves, they are primarily cleared through optical shattering. (3) We demonstrated optical guiding in the longest-filament induced air waveguides to date (~50 m, a length increase of ~60×) using multi-filamentation of Laguerre-Gaussian LG01 modes with pulse durations informed by experiment (1). (4) We demonstrated the first continuously operating air waveguide, using a high-repetition-rate laser to replenish the waveguide faster than it could thermally dissipate. For each of the air waveguide experiments, extension to much longer ranges and steady state operation is discussed.Item Engineering a Control System for a Logical Qubit-Scale Trapped Ion Quantum Computer(2023) Risinger, Andrew Russ; Monroe, Christopher R; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Quantum computing is a promising field for continuing to develop new computing capabilities, both in its own right and for continued gains as Moore's Law growth ends.Trapped ion quantum computing is a leading technology in the field of quantum computing, as it combines the important characteristics of high fidelity operations, individual addressing, and long coherence times. However, quantum computers are still in their infancy; the first quantum computers to have more than a handful of quantum bits (qubits) are less than a decade old. As research groups push the boundaries of the number of qubits in a system, they are consistently running into engineering obstacles preventing them from achieving their goals. There is effectively a knowledge gap between the physicists who have the capability to push the field of quantum computing forward, and the engineers who can design the large-scale & reliable systems that enable pushing those envelopes. This thesis is an attempt to bridge that gap by framing trapped ion quantum computing in a manner accessible to engineers, as well as improving on the state-of-the-art in quantum computer digital and RF control systems. We also consider some of the practical and theoretical engineering challenges that arise when developing a leading-edge trapped ion quantum computer capable of demonstrating error-corrected logical qubits, using trapped Ytterbium-171 qubits.There are many fundamental quantum operations that quantum information theory assumes, yet which are quite complicated to implement in reality. First, we address the time cost of rearranging a chain of ions after a scrambling collision with background gases. Then we consider a gate waveform generator that reduces programming time while supporting conditional quantum gates. Next, we discuss the development of a digital control system custom-designed for quantum computing and quantum networking applications. Finally, we demonstrate experimental results of the waveform generator executing novel gate schemes on a chain of trapped ions. These building blocks together will unlock new capabilities in the field of trapped ion quantum computers.Item WAVE SCATTERING PROPERTIES IN COMPLEX SCATTERING SYSTEMS: ZEROS AND POLES OF THE SCATTERING MATRIX(2022) Chen, Lei; Anlage, Steven M; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Wave scattering properties in complex scattering systems have been of great interest to both the physics and engineering communities because of their useful characterizations of such systems and significant value for applications. The most common tool for studying such properties – the scattering (S)-matrix, can be fully represented by its zeros and poles in the complex energy/frequency plane. There has been substantial effort to understand the scattering properties and wave phenomena inside complex systems in the past, both theoretical and experimental, which in turn has led to significant advancement in many applications: wavefront shaping (WFS), coherent perfect absorption (CPA), wireless power transfer, electromagnetic interference (EMI), etc. In this dissertation, I will summarize the recent progress and interest regarding an intriguing wave phenomenon – coherent perfect absorption (CPA) in complex scattering systems. We have successfully implemented CPA protocols in generic complex scattering systems without any geometric or hidden symmetries, which greatly extends CPA beyond its initial concept as the time-reversal of a laser cavity. Under such efforts, we have also established a convenient approach for control of the local losses inside the network system, which helped us to uncover the mystery of matching the imaginary part of the S-matrix zero to the uniform loss of the system. We thus developed the theoretical representation of the S-matrix by its zeros and poles, and generalized the traditional Wigner time delay to a complex quantity in sub-unitary scattering systems. We have revealed the inherent connection between the complex Wigner time delay and coherent perfect absorption, and can utilize the new complex Wigner time delay idea for extracting S-matrix zeros and poles in a practical system. We have also studied the statistical properties of the complex generalization of Wigner time delay for subunitary wave-chaotic scattering systems, and demonstrated excellent agreement between theory and experiments. Finally, we have extended this scheme to a comprehensive time delay analysis framework, including Wigner, transmission, and reflection time delays. This approach offers us the capability to systematically analyze the poles and zeros of the scattering matrix of any complex scattering system. We then apply the new transmission time delay method on a two-channel microwave graph realization of the Aharonov--Bohm ring from mesoscopic physics, and demonstrate the dependence of non-reciprocal transport behavior on the de-phasing rate. The ultimate goal is to completely control the scattering properties of complex systems by manipulating the zeros and poles of the S-matrix, for example by adding losses in the system or changing the coupling of the scattering channels, etc. Such a capability will be extremely useful for understanding the wave properties of complex scattering systems, and for controlling the wave behavior in optics, electromagnetics, acoustics, quantum transport in condensed matter systems, etc.Item Device and Circuit Level EMI Induced Vulnerability: Modeling and Experiments(2021) Cui, Yumeng; Goldsman, Neil; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Electro-magnetic interference (EMI) commonly exists in electronic equipment containing semiconductor-based integrated circuits (ICs). Metal-oxide-semiconductor field-effect-transistors (MOSFETs) in the ICs may be disrupted under EMI conditions due to transient voltage-current surges, and their internal states may change undesirably. In this work, the vulnerabilities of silicon MOSFETs under EMI are studied at the device and the circuit levels, categorized as non-permanent upsets (``Soft Errors'') and permanent damages (``Hard Failures''). The Soft Errors, such as temporary bit errors and waveform distortions, may happen or be intensified under EMI, as the transient disruptions activate unwanted and highly non-linear changes inside MOSFETs, such as Impact Ionization and Snapback. The system may be corrected from the erroneous state when the EMI condition is removed. We simulate planar silicon n-type MOSFETs at the device level to study the physical mechanisms leading to or complicate the short-term, signal-level Soft Errors. We experimentally tested commercially available MOSFET devices. Not included in regular MOSFET models, exponential-like current increases as the terminal voltage increases are observed and explained using the device-level knowledge. We develop a compact Soft Error model, compatible with circuit simulators using lumped (or compact-model) components and closed-form expressions, such as SPICE, and calibrate it with our in-house experimental data using an in-house extraction technique based on the Genetic Algorithm. Example circuits are simulated using the extracted device model and under EMI-induced transient disruptions. The EMI voltage-current disruptions may also lead to permanent Hard Failures that cannot be repaired without replacement. One type of Hard Failures, the MOSFET gate dielectric (or ``oxide'') breakdown, can result in input-output relation changes and additional thermal runaway. We have fabricated individual MOSFET devices at the FabLab at the University of Maryland NanoCenter. We experimentally stress-test the fabricated devices and observe the rapid, permanent oxide breakdown. Then, we simulate a nano-scale FinFET device with ultra-thin gate oxide at the device level. Then, we apply the knowledge from our experiments to the simulated FinFET, producing a gate oxide breakdown Hard Failure circuit model. The proposed workflow enables the evaluation of EMI-induced vulnerabilities in circuit simulations before actual fabrication and experiments, which can help the early-stage prototyping process and reduce the development time.Item Wavefront Shaping in a Complex Reverberant Environment with a Binary Tunable Metasurface(2021) Frazier, Benjamin West; Antonsen, Thomas M; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Electromagnetic environments are becoming increasingly complex and congested, creating a growing challenge for systems that rely on electromagnetic waves for communication, sensing, or imaging. The use of intelligent, reconfigurable metasurfaces provides a potential means for achieving a radio environment that is capable of directing propagating waves to optimize wireless channels on-demand, ensuring reliable operation and protecting sensitive electronic components. The capability to isolate or reject unwanted signals in order to mitigate vulnerabilities is critical for any practical application. In the first part of this dissertation, I describe the use of a binary programmable metasurface to (i) control the spatial degrees of freedom for waves propagating inside an electromagnetic cavity and demonstrate the ability to create nulls in the transmission coefficient between selected ports; and (ii) create the conditions for coherent perfect absorption. Both objectives are performed at arbitrary frequencies. In the first case a novel and effective stochastic optimization algorithm is presented that selectively generates coldspots over a single frequency band or simultaneously over multiple frequency bands. I show that this algorithm is successful with multiple input port configurations and varying optimization bandwidths. In the second case I establish how this technique can be used to establish a multi-port coherent perfect absorption state for the cavity. In the second part of this dissertation, I introduce a technique that combines a deep learning network with a binary programmable metasurface to shape waves in complex electromagnetic environments, in particular ones where there is no direct line-of-sight. I applied this technique for wavefront reconstruction and accurately determined metasurface configurations based on measured system scattering responses in a chaotic microwave cavity. The state of the metasurface that realizes desired electromagnetic wave field distribution properties was successfully determined even in cases previously unseen by the deep learning algorithm. My technique is enabled by the reverberant nature of the cavity, and is effective with a metasurface that covers only ~1.5% of the total cavity surface area.Item Modelling and Measurement of Reciprocal Quantum Logic Circuits(2021) Luo, Henry; Wellstood, Frederick; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)This dissertation presents work on three aspects of Reciprocal Quantum Logic (RQL) circuits: devising accurate inductance models of Nb wires, analyzing, and measuring RQL logic gates, and mitigating the effects of parasitic coupling in RQL circuits. These separate aspects are all important to verify or improve the operating margins of RQL circuits. An inductance model for Nb wire routes based on electromagnetic simulation and measurement of inductance test circuits is described. The inductance test circuits are fabricated in the D-Wave Systems process. The inductance of straight segments, corners, and vias, and the mutual inductance between straight segments are modelled and measured. Measured data from 6 different releases and 8 wafers is presented. Proximity effects and wafer radial effects are discussed. Finally, a 2-material model for Nb wires is introduced and yields a good fit to the measured inductances. An RQL gates testbed chip was designed, fabricated, and tested. This chip was also fabricated in the D-wave Systems process. The measured gates included the buffer Josephson Transmission Line (JTL), delay JTL, and2, and or2 gates. Fifteen different design variations of each of these gates, which varied three inductors in the gate, are analyzed and shown to match well to simulation models. The variation in the upper operating limit or upper margin per design variation was roughly 3.5%, 5%, 7%, and 5% for the buffer JTL, delay JTL, and2, and or2, respectively. Tools were developed to account for and mitigate the effect of parasitic mutual coupling in RQL circuits. A back-annotation RQL tool (BART), to back-annotate parasitic mutual inductance, was developed for the extraction and simulation of small RQL designs. Using this tool on a 2x2 bit memory cell, the back-annotated simulation was able to explain measurements of the different operating regions for different test vectors. A methodology, bias point delta (BPD), for improving signal integrity of RQL circuits is also introduced. This methodology was applied to a 3,274 JJ design and the amount of coupled flux before and after routing improvements are compared. The work in this dissertation describes the development of models and tools that aid in the design of large RQL circuits, and it will serve as the groundwork for future research in RQL and potentially other Single Flux Quantum (SFQ) technologies.Item Toward the Fluxonium Quantum Processor(2020) Nguyen, Long Bao; Manucharyan, Vladimir E; Antonsen, Thomas M; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)This thesis reports recent achievements toward scalable quantum computing with fluxonium, a superconducting artificial atom with rich energy spectrum and selection rules similar to those found in natural atoms. We show how such spectral properties can be harnessed to protect the qubit from energy relaxation and dephasing. At half-integer flux quantum bias, we show that fluxonium’s |0〉→ |1〉qubit transition has high coherence by design, with T1, T2≈500 μs in one device, the highest reported in superconducting circuits so far. Yet, the qubit exhibits the same level of addressability found in more conventional superconducting qubits (Tgate<50 ns). In addition, a controlled-Z gate can be implemented by sending a short2π-pulse at a frequency near the |1〉→|2〉transition of the target qubit. Preliminary results suggest that this gate can be used to entangle two fluxonium qubits with high fidelity. We also discuss experimental techniques employed to characterize the qubits, and present a perspective on future fluxonium-based quantum technologies.