Geography Research Works
Permanent URI for this collectionhttp://hdl.handle.net/1903/1641
Browse
18 results
Search Results
Item Operational Automatic Remote Sensing Image Understanding Systems: Beyond Geographic Object-Based and Object-Oriented Image Analysis (GEOBIA/GEOOIA). Part 1: Introduction(MDPI, 2012-09-14) Baraldi, Andrea; Boschetti, LuigiAccording to existing literature and despite their commercial success, state-of-the-art two-stage non-iterative geographic object-based image analysis (GEOBIA) systems and three-stage iterative geographic object-oriented image analysis (GEOOIA) systems, where GEOOIA ⊃ GEOBIA, remain affected by a lack of productivity, general consensus and research. To outperform the degree of automation, accuracy, efficiency, robustness, scalability and timeliness of existing GEOBIA/GEOOIA systems in compliance with the Quality Assurance Framework for Earth Observation (QA4EO) guidelines, this methodological work is split into two parts. The present first paper provides a multi-disciplinary Strengths, Weaknesses, Opportunities and Threats (SWOT) analysis of the GEOBIA/GEOOIA approaches that augments similar analyses proposed in recent years. In line with constraints stemming from human vision, this SWOT analysis promotes a shift of learning paradigm in the pre-attentive vision first stage of a remote sensing (RS) image understanding system (RS-IUS), from sub-symbolic statistical model-based (inductive) image segmentation to symbolic physical model-based (deductive) image preliminary classification. Hence, a symbolic deductive pre-attentive vision first stage accomplishes image sub-symbolic segmentation and image symbolic pre-classification simultaneously. In the second part of this work a novel hybrid (combined deductive and inductive) RS-IUS architecture featuring a symbolic deductive pre-attentive vision first stage is proposed and discussed in terms of: (a) computational theory (system design); (b) information/knowledge representation; (c) algorithm design; and (d) implementation. As proof-of-concept of symbolic physical model-based pre-attentive vision first stage, the spectral knowledge-based, operational, near real-time Satellite Image Automatic Mapper™ (SIAM™) is selected from existing literature. To the best of these authors’ knowledge, this is the first time a symbolic syntactic inference system, like SIAM™, is made available to the RS community for operational use in a RS-IUS pre-attentive vision first stage, to accomplish multi-scale image segmentation and multi-granularity image pre-classification simultaneously, automatically and in near real-time.Item Operational Automatic Remote Sensing Image Understanding Systems: Beyond Geographic Object-Based and Object-Oriented Image Analysis (GEOBIA/GEOOIA). Part 2: Novel system Architecture, Information/Knowledge Representation, Algorithm Design and Implementation(MDPI, 2012-09-20) Baraldi, Andrea; Boschetti, LuigiAccording to literature and despite their commercial success, state-of-the-art two-stage non-iterative geographic object-based image analysis (GEOBIA) systems and three-stage iterative geographic object-oriented image analysis (GEOOIA) systems, where GEOOIA ⊃ GEOBIA, remain affected by a lack of productivity, general consensus and research. To outperform the Quality Indexes of Operativeness (OQIs) of existing GEOBIA/GEOOIA systems in compliance with the Quality Assurance Framework for Earth Observation (QA4EO) guidelines, this methodological work is split into two parts. Based on an original multi-disciplinary Strengths, Weaknesses, Opportunities and Threats (SWOT) analysis of the GEOBIA/GEOOIA approaches, the first part of this work promotes a shift of learning paradigm in the pre-attentive vision first stage of a remote sensing (RS) image understanding system (RS-IUS), from sub-symbolic statistical model-based (inductive) image segmentation to symbolic physical model-based (deductive) image preliminary classification capable of accomplishing image sub-symbolic segmentation and image symbolic pre-classification simultaneously. In the present second part of this work, a novel hybrid (combined deductive and inductive) RS-IUS architecture featuring a symbolic deductive pre-attentive vision first stage is proposed and discussed in terms of: (a) computational theory (system design), (b) information/knowledge representation, (c) algorithm design and (d) implementation. As proof-of-concept of symbolic physical model-based pre-attentive vision first stage, the spectral knowledge-based, operational, near real-time, multi-sensor, multi-resolution, application-independent Satellite Image Automatic Mapper™ (SIAM™) is selected from existing literature. To the best of these authors’ knowledge, this is the first time a symbolic syntactic inference system, like SIAM™, is made available to the RS community for operational use in a RS-IUS pre-attentive vision first stage, to accomplish multi-scale image segmentation and multi-granularity image pre-classification simultaneously, automatically and in near real-time.Item Long-Term Record of Sampled Disturbances in Northern Eurasian Boreal Forest from Pre-2000 Landsat Data(MDPI, 2014-06-27) Chen, Dong; Loboda, Tatiana; Channan, Saurabh; Hoffman-Hall, AmandaStand age distribution is an important descriptor of boreal forest structure, which is directly linked to many ecosystem processes including the carbon cycle, the land–atmosphere interaction and ecosystem services, among others. Almost half of the global boreal biome is located in Russia. The vast extent, remote location, and limited accessibility of Russian boreal forests make remote sensing the only feasible approach to characterize these forests to their full extent. A wide variety of satellite observations are currently available to monitor forest change and infer its structure; however, the period of observations is mostly limited to the 2000s era. Reconstruction of wall-to-wall maps of stand age distribution requires merging longer-term site observations of forest cover change available at the Landsat scale at a subset of locations in Russia with the wall-to-wall coverage available from coarse resolution satellites since 2000. This paper presents a dataset consisting of a suite of multi-year forest disturbance samples and samples of undisturbed forests across Russia derived from Landsat Thematic Mapper and Enhanced Thematic Mapper Plus images from 1985 to 2000. These samples provide crucial information regarding disturbance history in selected regions across the Russian boreal forest and are designed to serve as a training and/or validation dataset for coarse resolution data products. The overall accuracy and Kappa coefficient for the entire sample collection was found to be 83.98% and 0.83%, respectively. It is hoped that the presented dataset will benefit subsequent studies on a variety of aspects of the Russian boreal forest, especially in relation to the carbon budget and climate.Item Environmental and Anthropogenic Degradation of Vegetation in the Sahel from 1982 to 2006(MDPI, 2016-11-13) Rishmawi, Khaldoun; Prince, Stephen D.There is a great deal of debate on the extent, causes, and even the reality of land degradation in the Sahel. Investigations carried out before approximately 2000 using remote sensing data suggest widespread reductions in biological productivity, while studies extending beyond 2000 consistently reveal a net increase in vegetation production, strongly related to the recovery of rainfall following the extreme droughts of the 1970s and 1980s, and thus challenging the notion of widespread, long-term, subcontinental-scale degradation. Yet, the spatial variations in the rates of vegetation recovery are not fully explained by rainfall trends. It is hypothesized that, in addition to rainfall, other meteorological variables and human land use have contributed to vegetation dynamics. Throughout most of the Sahel, the interannual variability in growing season ΣNDVIgs (measured from satellites, used as a proxy of vegetation productivity) was strongly related to rainfall, humidity, and temperature (mean r2 = 0.67), but with rainfall alone was weaker (mean r2 = 0.41). The mean and upper 95th quantile (UQ) rates of change in ΣNDVIgs in response to climate were used to predict potential ΣNDVIgs—that is, the ΣNDVIgs expected in response to climate variability alone, excluding any anthropogenic effects. The differences between predicted and observed ΣNDVIgs were regressed against time to detect any long-term (positive or negative) trends in vegetation productivity. Over most of the Sahel, the trends did not significantly depart from what is expected from the trends in meteorological variables. However, substantial and spatially contiguous areas (~8% of the total area of the Sahel) were characterized by negative, and, in some areas, positive trends. To explore whether the negative trends were human-induced, they were compared with the available data of population density, land use, and land biophysical properties that are known to affect the susceptibility of land to degradation. The spatial variations in the trends of the residuals were partly related to soils and tree cover, but also to several anthropogenic pressures.Item Developing an Integrated Remote Sensing Based Biodiversity Index for Predicting Animal Species Richness(MDPI, 2018-05-10) Wu, Jinhui; Liang, ShunlinMany remote sensing metrics have been applied in large-scale animal species monitoring and conservation. However, the capabilities of these metrics have not been well compared and assessed. In this study, we investigated the correlation of 21 remote sensing metrics in three categories with the global species richness of three different animal classes using several statistical methods. As a result, we developed a new index by integrating several highly correlated metrics. Of the 21 remote sensing metrics analyzed, evapotranspiration (ET) had the greatest impact on species richness on a global scale (explained variance: 52%). The metrics with a high explained variance on the global scale were mainly in the energy/productivity category. The metrics in the texture category exhibited higher correlation with species richness at regional scales. We found that radiance and temperature had a larger impact on the distribution of bird richness, compared to their impacts on the distributions of both amphibians and mammals. Three machine learning models (i.e., support vector machine, random forests, and neural networks) were evaluated for metric integration, and the random forest model showed the best performance. Our newly developed index exhibited a 0.7 explained variance for the three animal classes’ species richness on a global scale, with an explained variance that was 20% higher than any of the univariate metrics.Item Impact of the Revisit of Thermal Infrared Remote Sensing Observations on Evapotranspiration Uncertainty—A Sensitivity Study Using AmeriFlux Data(MDPI, 2019-03-08) Guillevic, Pierre C.; Olioso, Albert; Hook, Simon J.; Fisher, Joshua B.; Lagouarde, Jean-Pierre; Vermote, Eric F.Thermal infrared remote sensing observations have been widely used to provide useful information on surface energy and water stress for estimating evapotranspiration (ET). However, the revisit time of current high spatial resolution (<100 m) thermal infrared remote sensing systems, sixteen days for Landsat for example, can be insufficient to reliably derive ET information for water resources management. We used in situ ET measurements from multiple Ameriflux sites to (1) evaluate different scaling methods that are commonly used to derive daytime ET estimates from time-of-day observations; and (2) quantify the impact of different revisit times on ET estimates at monthly and seasonal time scales. The scaling method based on a constant evaporative ratio between ET and the top-of-atmosphere solar radiation provided slightly better results than methods using the available energy, the surface solar radiation or the potential ET as scaling reference fluxes. On average, revisit time periods of 2, 4, 8 and 16 days resulted in ET uncertainties of 0.37, 0.55, 0.73 and 0.90 mm per day in summer, which represented 13%, 19%, 23% and 31% of the monthly average ET calculated using the one-day revisit dataset. The capability of a system to capture rapid changes in ET was significantly reduced for return periods higher than eight days. The impact of the revisit on ET depended mainly on the land cover type and seasonal climate, and was higher over areas with high ET. We did not observe significant and systematic differences between the impacts of the revisit on monthly ET estimates that are based on morning or afternoon observations. We found that four-day revisit scenarios provided a significant improvement in temporal sampling to monitor surface ET reducing by around 40% the uncertainty of ET products derived from a 16-day revisit system, such as Landsat for instance.Item Assessing Terrestrial Ecosystem Resilience using Satellite Leaf Area Index(MDPI, 2020-02-11) Wu, Jinhui; Liang, ShunlinQuantitative approaches to measuring and assessing terrestrial ecosystem resilience, which expresses the ability of an ecosystem to recover from disturbances without shifting to an alternative state or losing function and services, is critical and essential to forecasting how terrestrial ecosystems will respond to global change. However, global and continuous terrestrial resilience measurement is fraught with difficulty, and the corresponding attribution of resilience dynamics is lacking in the literature. In this study, we assessed global terrestrial ecosystem resilience based on the long time-series GLASS LAI product and GIMMS AVHRR LAI 3g product, and validated the results using drought and fire events as the main disturbance indicators. We also analyzed the spatial and temporal variations of global terrestrial ecosystem resilience and attributed their dynamics to climate change and environmental factors. The results showed that arid and semiarid areas exhibited low resilience. We found that evergreen broadleaf forest exhibited the highest resilience (mean resilience value (from GLASS LAI): 0.6). On a global scale, the increase of mean annual precipitation had a positive impact on terrestrial resilience enhancement, while we found no consistent relationships between mean annual temperature and terrestrial resilience. For terrestrial resilience dynamics, we observed three dramatic raises of disturbance frequency in 1989, 1995, and 2001, respectively, along with three significant drops in resilience correspondingly. Our study mapped continuous spatiotemporal variation and captured interannual variations in terrestrial ecosystem resilience. This study demonstrates that remote sensing data are effective for monitoring terrestrial resilience for global ecosystem assessment.Item Assessing within-Field Corn and Soybean Yield Variability from WorldView-3, Planet, Sentinel-2, and Landsat 8 Satellite Imagery(MDPI, 2021-02-26) Skakun, Sergii; Kalecinski, Natacha I.; Brown, Meredith G. L.; Johnson, David M.; Vermote, Eric F.; Roger, Jean-Claude; Franch, BelenCrop yield monitoring is an important component in agricultural assessment. Multi-spectral remote sensing instruments onboard space-borne platforms such as Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS), and Visible Infrared Imaging Radiometer Suite (VIIRS) have shown to be useful for efficiently generating timely and synoptic information on the yield status of crops across regional levels. However, the coarse spatial resolution data inherent to these sensors provides little utility at the management level. Recent satellite imagery collection advances toward finer spatial resolution (down to 1 m) alongside increased observational cadence (near daily) implies information on crops obtainable at field and within-field scales to support farming needs is now possible. To test this premise, we focus on assessing the efficiency of multiple satellite sensors, namely WorldView-3, Planet/Dove-Classic, Sentinel-2, and Landsat 8 (through Harmonized Landsat Sentinel-2 (HLS)), and investigate their spatial, spectral (surface reflectance (SR) and vegetation indices (VIs)), and temporal characteristics to estimate corn and soybean yields at sub-field scales within study sites in the US state of Iowa. Precision yield data as referenced to combine harvesters’ GPS systems were used for validation. We show that imagery spatial resolution of 3 m is critical to explaining 100% of the within-field yield variability for corn and soybean. Our simulation results show that moving to coarser resolution data of 10 m, 20 m, and 30 m reduced the explained variability to 86%, 72%, and 59%, respectively. We show that the most important spectral bands explaining yield variability were green (0.560 μm), red-edge (0.726 μm), and near-infrared (NIR − 0.865 μm). Furthermore, the high temporal frequency of Planet and a combination of Sentinel-2/Landsat 8 (HLS) data allowed for optimal date selection for yield map generation. Overall, we observed mixed performance of satellite-derived models with the coefficient of determination (R2) varying from 0.21 to 0.88 (averaging 0.56) for the 30 m HLS and from 0.09 to 0.77 (averaging 0.30) for 3 m Planet. R2 was lower for fields with higher yields, suggesting saturation of the satellite-collected reflectance features in those cases. Therefore, other biophysical variables, such as soil moisture and evapotranspiration, at similar fine spatial resolutions are likely needed alongside the optical imagery to fully explain the yields.Item Metrics to Accelerate Private Sector Investment in Sustainable Development Goal 2—Zero Hunger(MDPI, 2021-05-25) Brown, Molly E.Substantial investment from both the private and public sectors will be needed to achieve the ambitious Sustainable Development Goal 2 (SDG2), which focuses on ending poverty and achieving zero hunger. To harness the private sector, high quality, transparent metrics are needed to ensure that every dollar spent reaches the most marginalized segments of a community while still helping institutions achieve their goals. Satellite-derived Earth observations will be instrumental in accelerating these investments and targeting them to the regions with the greatest need. This article proposes two quantitative metrics that could be used to evaluate the impact of private sector activities on SDG2: measuring increases in yield over baseline and ensuring input availability and affordability in all markets.Item A Disease Control-Oriented Land Cover Land Use Map for Myanmar(MDPI, 2021-06-13) Chen, Dong; Shevade, Varada; Baer, Allison; He, Jiaying; Hoffman-Hall, Amanda; Ying, Qing; Li, Yao; Loboda, Tatiana V.Malaria is a serious infectious disease that leads to massive casualties globally. Myanmar is a key battleground for the global fight against malaria because it is where the emergence of drug-resistant malaria parasites has been documented. Controlling the spread of malaria in Myanmar thus carries global significance, because the failure to do so would lead to devastating consequences in vast areas where malaria is prevalent in tropical/subtropical regions around the world. Thanks to its wide and consistent spatial coverage, remote sensing has become increasingly used in the public health domain. Specifically, remote sensing-based land cover/land use (LCLU) maps present a powerful tool that provides critical information on population distribution and on the potential human-vector interactions interfaces on a large spatial scale. Here, we present a 30-meter LCLU map that was created specifically for the malaria control and eradication efforts in Myanmar. This bottom-up approach can be modified and customized to other vector-borne infectious diseases in Myanmar or other Southeastern Asian countries.