Geography Research Works

Permanent URI for this collectionhttp://hdl.handle.net/1903/1641

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    A Sample-Based Forest Monitoring Strategy Using Landsat, AVHRR and MODIS Data to Estimate Gross Forest Cover Loss in Malaysia between 1990 and 2005
    (MDPI, 2013-04-15) Giree, Namita; Stehman, Stephen V.; Potapov, Peter; Hansen, Matthew C.
    Insular Southeast Asia is a hotspot of humid tropical forest cover loss. A sample-based monitoring approach quantifying forest cover loss from Landsat imagery was implemented to estimate gross forest cover loss for two eras, 1990–2000 and 2000–2005. For each time interval, a probability sample of 18.5 km × 18.5 km blocks was selected, and pairs of Landsat images acquired per sample block were interpreted to quantify forest cover area and gross forest cover loss. Stratified random sampling was implemented for 2000–2005 with MODIS-derived forest cover loss used to define the strata. A probability proportional to x (πpx) design was implemented for 1990–2000 with AVHRR-derived forest cover loss used as the x variable to increase the likelihood of including forest loss area in the sample. The estimated annual gross forest cover loss for Malaysia was 0.43 Mha/yr (SE = 0.04) during 1990–2000 and 0.64 Mha/yr (SE = 0.055) during 2000–2005. Our use of the πpx sampling design represents a first practical trial of this design for sampling satellite imagery. Although the design performed adequately in this study, a thorough comparative investigation of the πpx design relative to other sampling strategies is needed before general design recommendations can be put forth.
  • Thumbnail Image
    Item
    Landsat Analysis Ready Data for Global Land Cover and Land Cover Change Mapping
    (MDPI, 2020-01-29) Potapov, Peter; Hansen, Matthew C.; Kommareddy, Indrani; Kommareddy, Anil; Turubanova, Svetlana; Pickens, Amy; Adusei, Bernard; Tyukavina, Alexandra; Ying, Qing
    The multi-decadal Landsat data record is a unique tool for global land cover and land use change analysis. However, the large volume of the Landsat image archive and inconsistent coverage of clear-sky observations hamper land cover monitoring at large geographic extent. Here, we present a consistently processed and temporally aggregated Landsat Analysis Ready Data produced by the Global Land Analysis and Discovery team at the University of Maryland (GLAD ARD) suitable for national to global empirical land cover mapping and change detection. The GLAD ARD represent a 16-day time-series of tiled Landsat normalized surface reflectance from 1997 to present, updated annually, and designed for land cover monitoring at global to local scales. A set of tools for multi-temporal data processing and characterization using machine learning provided with GLAD ARD serves as an end-to-end solution for Landsat-based natural resource assessment and monitoring. The GLAD ARD data and tools have been implemented at the national, regional, and global extent for water, forest, and crop mapping. The GLAD ARD data and tools are available at the GLAD website for free access.