Undergraduate Research Day 2021

Permanent URI for this collectionhttp://hdl.handle.net/1903/27016

With students involved in so many research opportunities, Undergraduate Research Day provides the perfect opportunity for them to share their work with the campus community. Held each April, Undergraduate Research Day showcases current research, scholarship, and artistic endeavors.

Browse

Search Results

Now showing 1 - 10 of 25
  • Item
    The Deprioritization of Gender and Protection During UNRWA’s 2018 Financial Crisis
    (2021) Greenwald, Erica; Kosko, Stacy; Tuke, Daniel
    On August 31, 2018, the United States Department of State announced their termination of all funding to the United Nations Relief and Works Agency for Palestinian Refugees in the Near East (UNRWA). Prior to 2018, the United States government was UNRWA’s largest donor and a leading advocate for the agency’s role in stabilizing the Middle East. Though UNRWA has historically faced funding challenges, the termination of U.S. funding plunged the agency into an unprecedented financial crisis. During emergencies—health, economic, military, or otherwise—gender work has often been relegated to non-essential status, limiting the quality and inclusivity of humanitarian response. This research considers how UNRWA’s gender and protection work was impacted by the agency’s 2018 financial crisis. Ultimately, I find that UNRWA’s institutional structure did not sufficiently value gender work, relegating this approach to non-essential status in crisis and making it especially vulnerable during budget cuts. As a result of these vulnerabilities, UNRWA dismantled gender and protection, ending targeted interventions, oversimplifying mainstreaming efforts, and exporting their work to non-experts. This paper also considers the implications of deprioritizing gender work: increasing gender-based violence, regional instability, and a self-reinforcing cycle of vulnerabilities. Moreover, this paper examines the connection between community and gender-based violence and its relation to violent extremism. Despite the vital importance of gender and protection work, as well as efforts to integrate this work in with other program lines, these programs are seen as nonessential and are routinely hit first and worst during budgetary crises.
  • Thumbnail Image
    Item
    Pieces of Lakeland: Using Augmented Reality Technology to Share History
    (2021-04-26) Dolan, Fiona; Fenlon, Katrina
    Lakeland is a historically black neighborhood located in College Park, Maryland. Ravaged by a plan for ‘urban renewal’ in the end of the 20th century, many current residents are unaware of the neighborhood’s unique history. The Lakeland Community Heritage Project has been working for over a decade to gather and preserve documentation of the fascinating history of this neighborhood. Through their collaboration with the Maryland Institute of Technology in the Humanities, they’ve built a sizable collection - but few other than those who have built it have any idea that it exists. How do we mobilize a digital, community-built archive to be present and visible in the public realm? I focused on the technology of augmented reality applications, a unique way of placing the digital in the scope of the physical. By focusing on a few carefully selected physical sites within Lakeland, I built timelines from images and data relating specifically to those sites. These narratives were woven into three different miniature collections, unique to each site. Users are able to explore them in an augmented-reality guided tour that shows them a timeline of the site’s history, as well as information about Lakeland itself. This project is a fresh way to bring archival collections directly into the public sphere, offering a novel opportunity to explore local history. It builds upon the work of Maryland Institute of Technology in the Humanities and the Lakeland Community Heritage Project, offering a new way to share their data with the public.
  • Thumbnail Image
    Item
    Biomarker Research Applications in Alzheimer's Disease
    (2021-05) Cieslak, Zofia; Acha, Beatrice; Hemani, Danny; Kubli, Anjali; Lee, So Min; Mgboji, Rejoyce; Nallani, Madhulika C.; Park, Michael J.; Samson, Mahalet; Wu, Benjamin; Smith, J. Carson; Smith, J. Carson
    Alzheimer’s Disease (AD) affects millions of older individuals and is a growing problem without an accessible diagnosis method, drug target for treatment, or model of the longitudinal progression of the disease. The project, led by University of Maryland Gemstone Team BRAIN, aims to determine how changes in memory, visuospatial ability, the plasma amyloid β 42/40 ratio, and the total hippocampal volume can be used to accurately predict the onset and progression of AD. Using the Alzheimer’s Disease Neuroimaging Initiative, a database that compiles data from nationwide studies, we analyze cognitive function (memory and visuospatial ability), plasma biomarkers (amyloid β 42/40 ratio), and brain imaging (hippocampal volume). Data analysis consists of using programs such as Python and JASP to analyze data from the ADNI database, and finding significant relationships between variables through statistical analysis. Our results suggest that the impact of the e4 allele on memory and visuospatial ability over time may be strong in people who show early cognitive decline, independent of age, sex and education, and that hippocampal volume loss is greater in people who carry the e4 allele independent of covariates. Furthermore, it is unclear if plasma biomarkers reflect brain pathology. Team BRAIN’s future research goals include addressing disparities in AD development among different demographic and socioeconomic groups, using our findings to work towards a novel and cost-effective approach to diagnosing and treating AD to eradicate boundaries in the access to care, applying machine learning to propose a model of prediction and longitudinal progression, and expanding the variable set to include more biomarkers.
  • Item
    Developing a Gaucher Disease Pharmacological Model of the Blood-Brain Barrier
    (2021-04) Selvadoss, Andrew; Muro, Silvia; Solomon, Melani; Feldman, Ricardo; Srikanth, Manasa; Gray, Kevin
    Gaucher disease is a genetic disorder that leads to the lysosomal enzyme glucocerebrosidase (GCase) being unable to function correctly. The enzyme breaks down glucocerebroside (GluCer) and in the case of Gaucher disease, a buildup of GluCer leads to various conditions which can often be neuropathic. A common treatment for Gaucher disease and other lysosomal storage diseases is enzyme replacement therapy, which consists of intravenously delivered recombinant enzymes. However, this treatment has an inability to treat the central nervous system (CNS) because of its inability to cross the blood-brain barrier (BBB). In vitro studies with Gaucher afflicted BBB cellular systems are needed to test the delivery of novel recombinant enzymes across the BBB. These experiments however are severely limited by the scarcity and expense of Gaucher endothelial cells, astrocytes, and neurons, which compose the BBB. This project's goal was to develop a pharmacological model of Gaucher disease using cellular systems involving treating healthy endothelial cells, astrocytes, to exhibit the Gaucher phenotype, and iPS service Gaucher neurons. First, cellular systems were treated with conduritol beta-epoxide (CBE), an inhibitor of GCase. Treatment with CBE lowered GCase activity and increased GluCer accumulation in both cell types, and to a similar extent as a genetic model- Gaucher skin fibroblasts. An in vitro model of the Gaucher BBB was created using a transwell system with CBE treated endothelial cells on the apical side, astrocytes on the basal side of the filter and iPS service Gaucher neurons in the basal well. Transport of GCase, modified to transcytose more efficiently was tested on the Gaucher BBB model, where more efficient transcytosis, lysosomal colocalization, and effects were observed when compared to control GCase. This model presents a promising step towards testing potential therapeutics for Gaucher disease.
  • Thumbnail Image
    Item
    Links Between Maternal Depressive Symptoms, Maternal Empathy, and Responses to Children’s Negative Emotions
    (2021) Trujillo, Amanda; Deol, Gunleen; Straske, Davis; Fitter, Megan; Cassidy, Jude
    The link between maternal depressive symptoms and negative socio-emotional child outcomes is well supported (e.g., Connell & Goodman, 2002; Dittrich et al., 2020; Goodman et al., 2011). However, prior research has not examined links between maternal empathy or mental health and mothers’ responses to child distress. The current study examines the association between maternal depressive symptoms and responses to children's negative emotions, with maternal empathy as a mediator. We hypothesize that mothers’ empathy will mediate the relation between maternal depressive symptoms and responses to children’s negative emotions, such that greater depressive symptoms will predict less empathy, which, in turn, will predict more unsupportive and fewer supportive responses to children’s negative emotions. Participants (N = 80) were mothers (47.6% white, 21.0% African American, 6.7% Asian/Pacific Islander, 10.5% Hispanic, 14.3% other and missing) and their children (M age = 4.5 years; 40.0% male, 49.5% female, 10.5% missing) from a two-part study with a 2-week interval between sessions. The indirect effects of maternal depressive symptoms on unsupportive responses (indirect effect = 0.001, [-.002, .004]) and supportive responses (indirect effect = .000, [-.002, .002]) through maternal empathy were not significant. However, there was a significant direct effect of maternal depressive symptoms on unsupportive responses (b = .028, p = .002) and a marginally significant direct effect of maternal depression on supportive responses (b = -.014, p = .089). Although we did not find a link between depressive symptoms and empathy, we found links between empathy and two subscales of unsupportive responses (maternal distress and punitive responses), and a marginally significant link between empathy and a subscale of supportive responses (problem-focused reactions). These findings suggest that parenting interventions targeting mothers with elevated depressive symptoms should aim to enhance maternal empathy to decrease unsupportive responses and increase supportive responses to children’s negative emotions.
  • Thumbnail Image
    Item
    Hawaiian Spinner Dolphins: Vulnerability to Climate Change and Exposure to Anthropogenic Sound
    (2021) Panday, Frances Marie; Lettrich, Matthew
    Cetaceans such as the Hawaiian spinner dolphin (Stenella longirostris) use the high-frequency (kHz) channel to communicate, find prey, and avoid predators. Anthropogenic activities, such as navigational sonar and vessel noise may result in acoustic disturbance or injury and impede dolphin behavior or have population-level impacts. Despite vessels producing lower frequency sounds (<400 Hz) that are detected at longer distances, it is still an effective proxy for sound propagation because higher frequency sounds are detected at shorter distances. This could mean overlap between vessel noise and dolphin hearing sensitivity, suggesting interference with their acoustic habitat. Climate change may also present additional threats to the distribution and abundance of the population. I evaluated the climate vulnerability and exposure to sound for two Hawaiian Spinner Dolphin stocks to determine if one stock was more at risk than the other and if there were any factors that contributed to such difference. I used NOAA Fisheries’ stock assessment reports to define clear stock boundaries and identify the pelagic and insular stocks. I conducted a literature review of relevant life histories and used a systematic methodology developed as part of NOAA Fisheries’ Marine Mammal Climate Vulnerability Assessment (MMCVA) project to assess their vulnerability to climate change. I quantified potential shipping exposure using a defined scoring rubric comparing the proportion of Marine Cadastre’s 2019 AIS (Automatic Identification Systems) Vessel Transit Counts data layer overlapping each stock boundary. Despite both stocks having high vulnerability to climate change, the insular stock was more susceptible due to the greater number of cumulative stressors and closer proximity to human activity. This stock also had greater exposure to sound because of its larger overlap with high-density vessel traffic. The life history attributes scored for climate change that have the most influence from sound were site fidelity, home range, and diet specificity. While the relationship between climate change and sound is still understudied, sound exposure may intensify the climate vulnerability of marine species if ocean acidification alters the ocean soundscape. Regardless, these findings offer resource managers additional information to consider in the management of Pacific cetacean stocks.
  • Thumbnail Image
    Item
    Identification of Clostridium Phage Endolysins with Novel Multimeric Genetic Sequences
    (2021) Bokil, Eesha; Baker, Charley; Nelson, Daniel; O'Hara, Jessica
    The endolysin CD27L is produced by the Clostridium phage phiCD27. This phage targets the bacteria and uses the endolysin’s enzymatic properties to lyse cells from within and release new replicated phages. Past studies have characterized the two domains of CD27L’s genetic sequence, the enzymatically active domain (EAD) at the N-terminus and the cell wall binding domain (CBD) at the C-terminus connected by a linker sequence. The gene sequence order is EAD-linker-CBD. A unique aspect of CD27L is its ability to form a multimeric enzymatic structure from these two domains where one EAD and multiple CBDs are present in one structure. This multimeric endolysin is formed from one gene, so translation of the one sequence uses two ribosome binding sites and two start codons. One ribosome binding site and start codon is before the EAD and the other in the linker sequence before the CBD. Our goal is to analyze the sequences of other Clostridium phage endolysins to find multimeric endolysins similar to CD27L. We are specifically looking for multiple ribosome binding sites with start codons or alternate start codons downstream in close proximity on one gene sequence.
  • Thumbnail Image
    Item
    Gene Targeting Techniques for Huntington's Disease
    (2021) Fields, Eric; Vaughan, Erik; Tripu, Deepika; Lim, Isabelle; Shrout, Katherine; Conway, Jessica; Salib, Nicole; Lee, Yubin; Dhamsania, Akash; Michael, Jacobsen; Woo, Ashley; Cao, Kan
    Huntington’s disease (HD) is an autosomal neurodegenerative disorder caused by extended trinucleotide CAG repetition in the HTT gene. Although this mutation in the HTT gene is mostly associated with neurological and physical symptoms that HD typically exhibits, wild-type Huntingtin protein (HTT) is involved in a variety of cellular functions such as vesicle transportation, cell division, transcription regulation, autophagy, and tissue maintenance. The main cause of HD symptoms is due to aggregation and accumulation of mutant HTT (mHTT) proteins in neurons. In this review, we discuss multiple approaches targeting DNA and RNA to reduce mHTT expression. These approaches are categorized into non-allele-specific silencing and allele-specific-silencing using SNPs and haplogroup analysis, and the possible limitations of targeting mHTT is also discussed. Additionally, this review discusses am potential appliction of recent CRISPR prime editing technology in treating HD.
  • Thumbnail Image
    Item
    Investigating Arginine Biosynthesis in Viral Replication
    (2020-11) Lee, Harrison; Griffin, Ryleigh; Stecklein, Sabrina; Chaudry, Daniel; O'Hara, Jessica
    When a virus infects a cell, it must hijack that host cell’s inner machinery, normally used to manufacture necessary molecules for the host cell, and divert that machinery to producing new viruses. Previous research has indicated that arginine, an amino acid, plays an important role in viral infection. We investigated the role arginine plays in infection in two ways. First, we compared how well bacteriophage, a type of bacteria-infecting virus, replicated in normal (parent) E. coli and genetically modified E. coli that could not produce their own arginine. These genetically modified E. coli are called a knock-out strain because the gene for a particular protein, in this case an enzyme involved in producing arginine, is removed. The gene in question is called argH and thus the knock-out strain is named ΔargH. Here we found that when arginine was available from outside the cell, there was no significant difference between bacteriophage replication in the two E. coli strains. Second, we observed how the levels of certain small molecules (metabolites), including arginine, inside a human cell changed after it was infected with the Human Cytomegalovirus (HCMV). We found that HCMV infected cells had altered levels of metabolites from throughout the arginine biosynthesis pathway, including increased levels of arginine.