Mechanical Engineering Research Works
Permanent URI for this collectionhttp://hdl.handle.net/1903/1661
Browse
2 results
Search Results
Item Hand Gesture Recognition Using EGaIn-Silicone Soft Sensors(MDPI, 2021-05-05) Shin, Sungtae; Yoon, Han UI; Yoo, ByungseokExploiting hand gestures for non-verbal communication has extraordinary potential in HCI. A data glove is an apparatus widely used to recognize hand gestures. To improve the functionality of the data glove, a highly stretchable and reliable signal-to-noise ratio sensor is indispensable. To do this, the study focused on the development of soft silicone microchannel sensors using a Eutectic Gallium-Indium (EGaIn) liquid metal alloy and a hand gesture recognition system via the proposed data glove using the soft sensor. The EGaIn-silicone sensor was uniquely designed to include two sensing channels to monitor the finger joint movements and to facilitate the EGaIn alloy injection into the meander-type microchannels. We recruited 15 participants to collect hand gesture dataset investigating 12 static hand gestures. The dataset was exploited to estimate the performance of the proposed data glove in hand gesture recognition. Additionally, six traditional classification algorithms were studied. From the results, a random forest shows the highest classification accuracy of 97.3% and a linear discriminant analysis shows the lowest accuracy of 87.4%. The non-linearity of the proposed sensor deteriorated the accuracy of LDA, however, the other classifiers adequately overcame it and performed high accuracies (>90%).Item Can You Do That Again? Time Series Consolidation as a Robust Method of Tailoring Gesture Recognition to Individual Users(MDPI, 2022-10-03) Dankovich, Louis J. IV; Vaughn-Cooke, Monifa; Bergbreiter, SarahRobust inter-session modeling of gestures is still an open learning challenge. A sleeve equipped with capacitive strap sensors was used to capture two gesture data sets from a convenience sample of eight subjects. Two pipelines were explored. In FILT a novel two-stage algorithm was introduced which uses an unsupervised learning algorithm to find samples representing gesture transitions and discards them prior to training and validating conventional models. In TSC a confusion matrix was used to automatically consolidate commonly confused class labels, resulting in a set of gestures tailored to an individual subject’s abilities. The inter-session testing accuracy using the Time Series Consolidation (TSC) method increased from a baseline inter-session average of 42.47 ± 3.83% to 93.02% ± 4.97% while retaining an average of 5.29 ± 0.46 out of the 11 possible gesture categories. These pipelines used classic machine learning algorithms which require relatively small amounts of data and computational power compared to deep learning solutions. These methods may also offer more flexibility in interface design for users suffering from handicaps limiting their manual dexterity or ability to reliably make gestures, and be possible to implement on edge devices with low computational power.