Department of Veterinary Medicine Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/2762

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    MOLECULAR BASIS OF VIRULENCE IN INFECTIOUS HEMATOPOIETIC NECROSIS VIRUS (IHNV) USING A REVERSE GENETICS APPROACH
    (2009) Ammayappan, Arun; Vakharia, Vikram N; Veterinary Medical Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Infectious hematopoietic necrosis virus (IHNV) is a pathogen of major economic importance to the aquaculture industry. The long-term goal of our work is to develop a safe and effective recombinant IHNV vaccine and possibly use IHNV as a virus vector to express foreign genes. To achieve this goal, the complete genome of IHNV 220-90 virulent strain was sequenced and characterized. Subsequently, a full-length cDNA clone of IHNV was generated by constructing the full length cDNA clone, between the cytomegalovirus (CMV) promoter and the autocatalytic hammerhead and hepatitis delta virus ribozymes. Transfection of a full-length plasmid, along with the supporting plasmids resulted in the recovery of infectious rIHNV-220-90. Characterization of the rIHNV-220-90 showed that its growth characteristics in tissue culture were comparable to those of the parental virus. The possible role of IHNV proteins in virulence was explored to some extent. For this, the entire genome of attenuated virus (IHNV-61) was sequenced and compared with its virulent strain. The comparative sequencing analysis studies revealed that majority of differences were located in the glycoprotein gene. The M and G genes, and the trailer region between virulent and attenuated viruses were exchanged; recombinant chimeric viruses were recovered and studied for their pathogenicity in rainbow trout. The results obtained from in vivo studies indicate that the glycoprotein plays a major role in IHNV virulence in fish, whereas the M gene and trailer region play a negligible role in virulence of IHNV. The potential of rIHNV to serve as a viral vector was explored by expressing the VP2 protein of IPNV and hemagglutinin-estrase (HE) protein of ISAV. The recovered rIHNV-VP2 and rIHNV-HE viruses stably expressed the VP2 and HE proteins respectively for at least five serial passages and showed characteristics comparable to that of the parental virus, except that there was a one-log reduction in the virus titer. These results demonstrated that the established reverse genetics system can be utilized effectively to examine the molecular determinants of virulence, pathogenesis, and new approaches for vaccine development.
  • Thumbnail Image
    Item
    Host Molecular Responses in Chickens Infected with an Avian Influenza Virus
    (2008-11-20) Ramirez-Nieto, Gloria Consuelo; Perez, Daniel R.; Veterinary Medical Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Avian influenza virus has a segmented RNA genome that allows the virus to evolve continuously and generate new strains. Wild birds serve as natural reservoirs of avian influenza virus and provide a potential source for emergence of new viruses, which traverse host barriers and infect new avian or mammalian species. The mechanisms involved in this process are not completely understood. Our main goal is to understand host-pathogen interactions involved in avian influenza pathogenicity. As part of our approach we studied the effect of pre-exposure of chickens to IBDV (infectious bursal disease virus) on host susceptibility to infection, disease progression, and host molecular responses to infection with a mallard H5N2 low pathogenic avian influenza (LPAI) virus. We found that prior exposure of chickens to IBDV led to increased susceptibility to infection with the mallard H5N2 LPAI virus compared to normal chickens. This increased susceptibility allowed us to further adapt the virus to chickens. After 22 passages (P22) in IBDV-pre-exposed chickens, the LPAI virus replicated substantially better than the wild-type (WT) mallard virus in both IBDV-exposed and normal chickens. Interestingly, the P22 virus showed similar levels of replication in the respiratory and intestinal tracts of both groups, although it caused exacerbated signs of disease and severe lesions in the IBDV-pre-exposed group. We suggest that prior IBDV exposure provides a port of entry for avian influenza in an otherwise resistant chicken population. Furthermore, adaptation of avian influenza (AI) in IBDV-exposed chickens may allow for the selection of AI virus strains with expanded tissue tropism. We also studied the effects of host response to H5N2 AI in normal and IBDV-infected birds using high-throughput gene expression analysis. We demonstrated that IBDV-exposed chickens showed less than optimal humoral responses to LPAI infection as well as alterations in local molecular pathways that eventually led to exacerbated disease and death. At the molecular level we found amino acid substitutions in the surface glycoprotein hemagglutinin (HA). Those changes suggest selection for a virus that binds to and replicates more efficiently in chickens. Taken together our results suggest that IBDV-pre-exposure may play a role in exacerbating AI-induced pathogenicity.
  • Thumbnail Image
    Item
    The role of Newcastle disease virus internal proteins in pathogenesis
    (2007-09-24) Rout, Subrat N; Samal, Siba K; Veterinary Medical Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The internal proteins, nucleocaspid protein (NP), phosphoprotein (P) and large polymerase protein (L) of Newcastle disease virus (NDV), play an important role in transcription and replication of the viral genome. However, their role in NDV pathogenesis has not been explored. In this study, the importance of internal proteins in NDV virulence was evaluated through a chimeric approach using an established reverse genetics technique. The L gene between an avirulent NDV strain LaSota and a moderately virulent NDV strain Beaudette C (BC) was exchanged, recombinant chimeric viruses were recovered and studied for their pathogenicity in the natural host, chicken. The results obtained from in vivo studies indicated that the L gene of NDV modulate role in NDV virulence in chickens. The NP and P genes of NDV were exchanged between BC and LaSota individually as well as in combination; chimeric viruses were recovered, indicating that heterologous NP and P genes were functional. In vitro replication of chimeric NP and P recombinant viruses in DF-1 cells indicated that the exchange of NP or P gene in NDV did not affect the replication of the chimeric viruses. The in vivo studies in chickens showed that the change in pathogenicity of these chimeric viruses was minimal and homotypic interaction between NP and P proteins is necessary for optimum pathogenicity of the virus.