SESYNC - National Socio-Environmental Synthesis Center
Permanent URI for this community
Browse
Browsing SESYNC - National Socio-Environmental Synthesis Center by Issue Date
Now showing 1 - 11 of 11
Results Per Page
Sort Options
Item The Blind Spot in the Green Revolution: Temples, Terraces, and Rice Farmers of Bali(2013-07) Wei, Cynthia; Burnside, William; Che-Castaldo, JudyThis case explores the complex interactions in a socio-environmental system, the Balinese wet rice cultivation system. Using a combination of the interrupted case and directed case methods, students are presented with an issue that arose during the implementation of Green Revolution agricultural policies in Bali: rice farmers were required to plant new high yield rice varieties continuously rather than following the coordinated cropping schedules set up by water temple priests. Students examine qualitative and quantitative data from classic anthropological research by Dr. Steven Lansing to learn about the important role that water temples play in achieving sustainable rice cultivation in Bali. Using a model that synthesizes ecological, hydrological, and ethnographic data, Lansing and his colleague, Dr. James Kremer, were able to demonstrate that temple priests determine the cropping schedules for farmers in a way that reduces pest growth and helps to manage limited water resources, maximizing rice yields. This four-part case can be used for a wide range of courses in a few class periods (total class time approximately 4.5-5 hrs.)Item Save the Turtles! And the Grizzlies? Or the Woodpeckers? Prioritizing Endangered Species Conservation(SESYNC, 2013-07) Che-Castaldo, Judy; Burnside, William; Wei, CynthiaThis case study explores the complexities involved in endangered species management and provides an opportunity for students to perform an exercise in socio-environmental synthesis. Developed for introductory undergraduate courses in environmental studies or conservation biology, it contains suggested modifications for upper-level undergraduate and graduate courses. Students take the position of wildlife managers who must decide how best to allocate limited resources for conserving multiple threatened and endangered species. Students are provided with data on the ecological characteristics and socio-economic circumstances for a set of five species, and then work in small groups to develop conservation priority rankings based on those data. Students summarize their decisions in writing and in small-group presentations, and the case concludes with an instructor-led discussion of how actual conservation priorities are determined.Item Best Practices for Integrating Ecosystem Services into Federal Decision Making(2015) Olander, Lydia; Johnston, Robert J.; Tallis, Heather; Kagan, Jimmy; Maquire, Lynn; Boyd, James; Polasky, Stephen; Wainger, LisaFederal agencies take many actions on behalf of the American public that influence ecosystem conditions and change the provision of a variety of ecosystem services valued by the public. To date, most decisions affecting ecosystems have relied on ecological assessments with little or no consideration of the value of ecosystem services. Best practice for ecosystem service assessments applies quantitative measures and methods that express both an ecosystem’s ability to provide people with valued services, and the social benefit (value) provided by those services. Well established preference evaluation methods, both market and non‐market economic valuation, as well as non‐monetary decision analysis methods can be used to estimate values for ecosystem services. These approaches are sometimes used by federal agencies. However, preference evaluation methods can be impractical because of time or resource constraints, particularly where new data need to be collected. In such cases, the minimum standard required for an ecosystem service assessment is to use quantitative or categorical measures that reflect the ecosystem’s ability to provide benefits to society but stop short of a formal assessment of people’s preferences. We call these quantitative measures of ecosystem services benefit relevant indicators (BRIs). Examples of BRIs include; instances of respiratory distress caused by wildfire smoke inhalation, number of bald eagles and number of people who value their existence, and storage volume of wetland areas upstream of a flood prone area with a community of 1,000 homes. While a number of insights that can be drawn from knowledge of BRIs alone, a more robust comparative analysis is provided by a more complete analysis that includes people’s preferences or values. If ecosystem service values or BRIs are not used in some manner, ecosystem services are not being assessed, and no direct insights can be drawn about effects on social welfare. This minimum best practice is broadly achievable across agencies and decision contexts with current capacity and resources.Item Socio-Environmental Synthesis Tutorials(SESYNC, 2015-01) Wei, CynthiaSocio-environmental (S-E) synthesis advances the understanding of S-E systems. These tutorials introduce fundamental concepts about S-E systems. Each tutorial consists of written text and accompanying resources that illustrate some of the key concepts for understanding S-E systems. The series includes: Tutorial 1- Overview of Socio-environmental Synthesis; provides an overview of the socio-environmental research and problem solving approach. Tutorial 2- Systems Perspectives and Dynamics; provides an overview of systems perspectives and the importance of understanding the behavior and dynamics of systems. Tutorial 3- Understanding Socio-environmental Systems: Thresholds, States, and Resilience; this tutorial describes basic concepts important for understanding the complex behavior of systems. Tutorial 4- Understanding Socio-environmental Systems: Hierarchy and Scale; this tutorial provides an introduction to concepts of hierarchy and scale and their importance for understanding socio-environmental systems. Learning Goals include: Tutorial 5- Understanding Socio-environmental Systems: Adaptive Cycles: his tutorial provides a basic introduction to the concept of adaptive cycles and their utility for understanding socio-environmental systems.Item WHITE PAPER: AN OVERVIEW OF CONCEPTUAL FRAMEWORKS, ANALYTICAL APPROACHES AND RESEARCH QUESTIONS IN THE FOOD-ENERGY-WATER NEXUS(2017) Jones, Kristal; Magliocca, Nicholas R; Hondula, KellyThe food-energy-water (FEW) nexus is increasingly emphasized and prioritized as a framework for research, technology, and policy to deal with complex socio-environmental problems. Producing food in sufficient quantity and of sufficient quality, ensuring enough but not too much water, and generating energy, all to meet human needs and desires, requires an understanding of how those goals complement or counteract one another in specific places and through specific processes. FEW nexus research focuses on understanding the interconnections among each system, in order to provide a more complete picture about the causes and consequences of changes within and across aspects of those systems. This paper synthesizes the current state of thinking and research in FEW nexus field. We first overview the systems underpinnings of the FEW nexus as a conceptual framework, and identify the assumptions, similarities and contrasts among the most cited models from current literature. Several analytical approaches – coupled systems, ecosystem services, flows and risk analysis – are emerging as key tools for conducting interdisciplinary FEW nexus research, and we identify their conceptual connections to systems thinking broadly as well as the specific assumptions that each make about the relationships among systems. Finally, based on expert consultations and assessment of current data availability, we highlight several topical areas of contemporary relevance for FEW nexus research at various scales. Characterizing the conceptual, analytical and empirical similarities and distinctions among approaches to FEW nexus research with a starting point for identifying innovative research questions and approaches.Item Do Energy Savings Grow on Shade Trees?(2017) Maher, JoeIn warm climates, trees could provide natural air-conditioning by shading homes. Yet, there is little rigorous empirical evidence on the shade benefits of green infrastructure. This paper uses data on tree removal permits from a tree protection policy in Gainesville, Florida, between 2000 and 2016, and applies a difference-in-difference estimation model to examine whether tree shade reduces electricity demand. I find that a typical tree removal leads to 4-6% more electricity consumption annually, and 8-10% more during summer months of peak air-conditioning demand. Effects increase with the amount of shade loss: from zero effect (no shade) to 8-12% (large shade loss) and 10-20% (very large shade loss). I then use these estimates to calculate the private benefits of shade trees ($450 to $1,900) and find that they are similar to other energy efficiency investments (retrofits, building codes) assessed using comparable evaluation methods. I also calculate the social benefits (shade benefits to neighbors, avoided emissions, and avoided generation costs) of the tree protection policy and find that they are equal to the city expenditures on this policy. Overall, this study presents a road map for utilities and policy makers to assess returns from investments in green infrastructure.Item Qualitative data sharing and re-use for socio-environmental systems research: A synthesis of opportunities, challenges, resources and approaches(2018) Jones, Kristal; Alexander, Steven M.; Bennett, Nathan; Bishop, Libby; Budden, Amber; Cox, Michael; Crosas, Mercè; Game, Eddie; Geary, Janis; Hahn, Charlie; Hardy, Dean; Johnson, Jay; Karcher, Sebastian; LaFevor, Matt; Motzer, Nicole; Pinto da Silva, Patricia; Pittman, Jeremy; Randell, Heather; Silva, Julie; Smith, Joseph; Smorul, Mike; Strasser, Carly; Strawhacker, Colleen; Stuhl, Andrew; Weber, Nicholas; Winslow, DeborahResearchers in many disciplines, both social and natural sciences, have a long history of collecting and analyzing qualitative data to answer questions that have many dimensions, to interpret other research findings, and to characterize processes that are not easily quantified. Qualitative data is increasingly being used in socio-environmental systems research and related interdisciplinary efforts to address complex sustainability challenges. There are many scientific, descriptive and material benefits to be gained from sharing and re-using qualitative data, some of which reflect the broader push toward open science, and some of which are unique to qualitative research traditions. However, although open data availability is increasingly becoming an expectation in many fields and methodological approaches that work on socio-environmental topics, there remain many challenges associated the sharing and re-use of qualitative data in particular. This white paper discusses opportunities, challenges, resources and approaches for qualitative data sharing and re-use for socio-environmental research. The content and findings of the paper are a synthesis and extension of discussions that began during a workshop funded by the National Socio-Environmental Synthesis Center (SESYNC) and held at the Center Feb. 28-March 2, 2017. The structure of the paper reflects the starting point for the workshop, which focused on opportunities, challenges and resources for qualitative data sharing, and presents as well the workshop outputs focused on developing a novel approach to qualitative data sharing considerations and creating recommendations for how a variety of actors can further support and facilitate qualitative data sharing and re-use. The white paper is organized into five sections to address the following objectives: (1) Define qualitative data and discuss the benefits of sharing it along with its role in socio-environmental synthesis; (2) Review the practical, epistemological, and ethical challenges regarding sharing such data; (3) Identify the landscape of resources available for sharing qualitative data including repositories and communities of practice (4) Develop a novel framework for identifying levels of processing and access to qualitative data; and (5) Suggest roles and responsibilities for key actors in the research ecosystem that can improve the longevity and use of qualitative data in the future.Item Facilitating Interdisciplinary Meetings: A Practical Guide(2021) Graef, Dana; Kramer, Jonathan; Motzer, NicoleFacilitators can play an important role in helping research teams achieve equitable collaborations, reach decisions, manage time, keep work flowing, and—at best—seamlessly achieve their goals. Having a facilitator can allow team leaders to focus on the content of the meeting itself and engage with group members in a different way. Facilitation can also help teams address many of the challenges that can emerge throughout the course of collaborative interdisciplinary research, from negotiating diverse priorities and interests, to designing effective and productive meetings, to navigating philosophical differences and power dynamics within a team. This guide offers pratical suggestions for how best to facilitate team work.Item Computer Based Concept Mapping: Flipping the Research Process(National Soci-Environmental Synthesis Center, University of Maryland, 2022) Palmer, Margaret A.The approach described is meant to facilitate the team-building process to accelerate interdisciplinary collaboration. It for use in workshops that bring together disciplinarily diverse groups who have not previously collaborated. A theme that is of interest to a broad array of scholars is identified. Selected themes should be those that can be conceptualized through many different frameworks e.g., food and water. A group of interested researchers are brought together and after introducing the theme and process, each individual participant uses a cyber platform to search for the types of data and data sets they believe important to the topic. This is followed by a facilitated group discussion focused on how each person approached data discovery—what topics and data they explored, in what order, and why? This exercise reveals differences in the assumptions, values, and perspectives that participants bring to a broad problem. Then the teams work iteratively in small groups to develop a research question(s) and identify associated types of data they can agree are critical. The search and discussion process facilitates the sharing and integration of knowledge. Because each person uses the same platform but queries it in diverse ways, then share how they went about the queries and why, the process promotes conversion of tacit knowledge into explicit knowledge—allowing diverse participants to communicate through cross-boundary discussion. Since building such platforms is time-consuming and expensive to build, widely available literature search platforms could be used.Item How Is the World Shaped by Infrastructure Projects That Have Been Cancelled or Stalled?(2022-08) Graef, Dana J.; Cole, Montina; Covich, Alan P.; Huete-Pérez, Jorge A.; Maxwell, Amanda; Peyton, Jonathan; Stuhl, Andrew; Velásquez Runk, JulieThis report is the result of an interdisciplinary, international effort to examine the socio-environmental consequences of large-scale infrastructure projects that have been planned but not built—and reasons why projects have been cancelled or stalled. Collectively, our team examined eight cases of cancelled or stalled infrastructure projects in the Americas, drawing from our experiences in academic research and professional practice. Across cases, we found that projects were cancelled or stalled for interrelated reasons including environmental impact assessments, litigation and legislation, strong opposition and media attention, and/or increasing costs and faltering justifications. Our work further shows that cancelled or stalled development projects can create socio-environmental consequences that persist and cascade over time. The consequences of unbuilt infrastructure projects include the following: the development of new research networks; the establishment of precedents for socio-environmental assessment; the strengthening of social movements, often against the proposed development; changes in land use and land tenure; the exposure of environmental racism and injustice; and shifted development interventions. In sum, paying attention to cancelled and stalled projects provides a transdisciplinary lens for understanding broader processes of development, knowledge, power, science, and socio-environmental change. We conclude that when proposed large infrastructure projects are assessed, additional attention needs to be given to how they may shape landscapes and societies even if they are never built.Item Best Practices for Interdisciplinary Team Research: Shaping a Team’s Social Environment(National Socio-Environmental Synthesis Center, University of Maryland, 2023) Margaret A. PalmerThis paper describes the factors that most influence collaborative environments in interdisciplinary team research. Strategies and practical ways to enhance the collaborations are provided. These include the importance of social interaction time and types of these are suggested as are good practices for use in establishing project shared goals, meeting agendas, and facilitated discussions. Further, engaging in reflexive discussions of how the teamwork is proceeding and the effectiveness of team interactions are important and ways to do this mentioned. Devoting time to share expertise of team members is also important as is team member diversification in terms of knowledge content and skills; and ways to do these along with references are described. Particularly helpful are the specific activities suggested to elicit divergent views among team members which moves teams forward toward integrative problem solving.