Generalizations of Schottky groups
Generalizations of Schottky groups
Files
Publication or External Link
Date
2017
Authors
Advisor
Citation
DRUM DOI
Abstract
Schottky groups are classical examples of free groups acting properly discontinuously on the complex projective line. We discuss two different applications of similar constructions. The first gives examples of 3-dimensional Lorentzian Kleinian groups which act properly discontinuously on an open dense subset of the Einstein universe. The second gives a large class of examples of free subgroups of automorphisms groups of partially cyclically ordered spaces. We show that for a certain cyclic order on the Shilov boundary of a Hermitian symmetric space, this construction corresponds exactly to representations of fundamental groups of surfaces with boundary which have maximal Toledo invariant.