Error Analysis of the Quasi-Gram--Schmidt Algorithm

dc.contributor.authorStewart, G. W.en_US
dc.date.accessioned2004-05-31T23:36:45Z
dc.date.available2004-05-31T23:36:45Z
dc.date.created2004-03en_US
dc.date.issued2004-04-19en_US
dc.description.abstractLet the $n{\times}p$ $(n\geq p)$ matrix $X$ have the QR~factorization $X = QR$, where $R$ is an upper triangular matrix of order $p$ and $Q$ is orthonormal. This widely used decomposition has the drawback that $Q$ is not generally sparse even when $X$ is. One cure is to discard $Q$ retaining only $X$ and $R$. Products like $a = Q\trp y = R\itp X\trp y$ can then be formed by computing $b = X\trp y$ and solving the system $R\trp a = b$. This approach can be used to modify the Gram--Schmidt algorithm for computing $Q$ and $R$ to compute $R$ without forming $Q$ or altering $X$. Unfortunately, this quasi-Gram--Schmidt algorithm can produce inaccurate results. In this paper it is shown that with reorthogonalization the inaccuracies are bounded under certain natural conditions. (UMIACS-TR-2004-17)en_US
dc.format.extent195881 bytes
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/1903/1346
dc.language.isoen_US
dc.relation.isAvailableAtDigital Repository at the University of Marylanden_US
dc.relation.isAvailableAtUniversity of Maryland (College Park, Md.)en_US
dc.relation.isAvailableAtTech Reports in Computer Science and Engineeringen_US
dc.relation.isAvailableAtUMIACS Technical Reportsen_US
dc.relation.ispartofseriesUM Computer Science Department; CS-TR-4572en_US
dc.relation.ispartofseriesUMIACS; UMIACS-TR-2004-17en_US
dc.titleError Analysis of the Quasi-Gram--Schmidt Algorithmen_US
dc.typeTechnical Reporten_US

Files

Original bundle

Now showing 1 - 2 of 2
No Thumbnail Available
Name:
CS-TR-4572.ps
Size:
191.29 KB
Format:
Postscript Files
Loading...
Thumbnail Image
Name:
CS-TR-4572.pdf
Size:
195.12 KB
Format:
Adobe Portable Document Format
Description:
Auto-generated copy of CS-TR-4572.ps