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Error Analysis of theQuasi-Gram{S
hmidt AlgorithmG. W. StewartABSTRACTLet the n�p (n � p) matrix X have the QR fa
torization X = QR, where Ris an upper triangular matrix of order p and Q is orthonormal. This widelyused de
omposition has the drawba
k that Q is not generally sparse evenwhen X is. One 
ure is to dis
ard Q retaining only X and R. Produ
tslike a = QTy = R�TXTy 
an then be formed by 
omputing b = XTy andsolving the system RTa = b. This approa
h 
an be used to modify theGram{S
hmidt algorithm for 
omputing Q and R to 
ompute R withoutforming Q or altering X. Unfortunately, this quasi-Gram{S
hmidt algo-rithm 
an produ
e ina

urate results. In this paper it is shown that withreorthogonalization the ina

ura
ies are bounded under 
ertain natural 
on-ditions.1. Introdu
tionThis paper is 
on
erned with the error analysis of an orthogonalization te
hnique, 
alledthe quasi-Gram{S
hmidt method|or for short, the QGS method. In a previous paper[5℄ the author has shown that this method 
an be 
ombined with 
olumn pivoting toyield low-rank approximations to sparse matri
es.To set the ba
kground let X be an n�p matrix with n � p. Then X has the QRfa
torization X = QR;where QTQ = I and R is upper triangular with positive diagonal elements. If X has full
olumn rank|as we will assume from now on|then this QR fa
torization is unique.An important way of 
omputing a QR fa
torization is the Gram{S
hmidt algorithmwith reorthogonalization. The heart of the method is an algorithm for updating a QRfa
torization. Suppose we know the QR fa
torization of X and wish to 
ompute theQR fa
torization of (X x), where x is independent of the 
olumns of X. This 
an bedone as follows.1. r = QTx2. u = x�Qr3. � = kuk4. q = u=� (1.1)1



2 The Quasi-Gram{S
hmidt AlgorithmHere the norm k � k is the ve
tor 2-norm. We 
all this pro
ess a Gram{S
hmidt step. Itis easy to show that if q, r, and � are 
omputed exa
tly then(X x) = (Q q)�R r0 ��is the QR fa
torization of (X x). The Gram{S
hmidt algorithm 
onsists of applyingGram{S
hmidt steps su

essively to the 
olumns of a matrix to obtain its QR fa
tor-ization.When the Gram{S
hmidt step is exe
uted in �nite-pre
ision 
oating-point arith-meti
, the ve
tor q may not be orthogonal to the 
olumns of Q. Spe
i�
ally, when thereis 
an
ellation in statement 2 of (1.1), the trailing digits in the 
omputed value of u willbe ina

urate, and u will deviate from orthogonalization in proportion to the degree of
an
ellation.The 
ure for this problem is to repeat the orthogonalization as follows.1. r1 = QTx2. u1 = x�Qr13. r2 = QTu14. u2 = u1 �Qr25. r = r1 + r26. � = ku2k7. q = u2=� (1.2)
Typi
ally this algorithm exhibits the following behavior. The norm of u2 is lessthan the norm of x by a fa
tor proportional to the degree of dependen
e of x on X.The norm of u2, on the other hand, is not mu
h smaller than the norm of u, whi
hguarantees the orthogonality of q to the 
olumn spa
e of X. For more on the propertiesof Gram{S
hmidt with reorthogonalization, see [2, Se
tion 2.2.4℄ or [4, Se
tion 3.1.4℄).1A widely used variant of the QR de
omposition is the pivoted QR-de
omposition inwhi
h XP = QR;where P is a permutation matrix the reorders the 
olumns ofX. The standard algorithmfor 
omputing this de
omposition [4, Se
tion 5.2.1℄ tends to put strongly independent
olumns at the beginning of XP and is useful in generating low-rank approximations toX. In [5℄ the author has shown how to adapt the Gram{S
hmidt algorithm to 
omputethis de
omposition. In this paper we will treat only the unpivoted algorithm, sin
e theunderlying Gram{S
hmidt step is the same in both algorithms.1Atypi
ally, u2 
an fail to be orthogonal to the 
olumn spa
e of x, in whi
h 
ase the reorthogonal-ization pro
ess must be repeated.



The Quasi-Gram{S
hmidt Algorithm 3When X is large and sparse, the Gram{S
hmidt algorithm is unsatisfa
tory. Thereason is that as the algorithm progresses, the new 
olumns of Q be
ome less and lesssparse. A 
ure for this problem [5℄ is to re
ognize that, sin
e Q = XR�1, it is onlyne
essary to retain the matrix R. Produ
ts, su
h as r = QTx 
an be 
omputed by �rst
omputing a = XTx and then solving the system RTr = a. These 
onsiderations leadto the following quasi-Gram{S
hmidt (QGS) step with reorthogonalization1. a1 = XTx2. Solve the system RTr1 = a13. Solve the system Rb1 = r14. u1 = x�Xb15. a2 = XTu16. Solve the system RTr2 = a27. Solve the system Rb2 = r28. u2 = u1 �Xb29. r = r1 + r210. � = ku2k
(1.3)

It is important to note that we do not 
ompute q = u2=�. Instead we de�ne q to be thelast 
olumn of (X x)�R r0 ���1 = (X x)�R�1 ���1R�1r0 ��1 � ; (1.4)that is, q = ��1x� ��1XR�1r = ��1(x�Qr): (1.5)There is good reason to be wary of this algorithm. If R is ill-
onditioned, the systemsin statements 2, 3, 6, and 7 may be solved ina

urately, and these ina

ura
ies 
ould
ompromise the orthogonality of Q = XR�1. In fa
t, something like this must happen.For suppose we are given the 
orre
tly rounded R from the QR fa
torization of X. ThenR = R+E, where kEk � 
kRk�M: (1.6)Here �M is the rounding unit (about 2:2�10�16 in IEEE double-pre
ision 
oating-pointarithmeti
), k � k is the spe
tral norm, and 
 is a 
onstant depending on the dimensionsof X. Suppose we 
ompute an approximation ~Q to Q using R+E but with no furthererror. Noting that up to terms of order �2M(R+E)�1 �= R�1 �R�1ER�1;we �nd that ~Q = X(R +E)�1 �= Q�QER�1:Hen
e ~QT ~Q �= QTQ�QTQER�1 �R�TEQTQ:



4 The Quasi-Gram{S
hmidt AlgorithmHen
e if we de�ne W = QTQ� Iand take ! = kWkas a measure the of nonorthonormality of Q, then~! <� ! + 2kQTQkkR�1kkEk � ! + 2
�(R)�M; (1.7)where �(R) = kRkkR�1k. Thus, however small the value of !, the rounding of R islikely to in
rease it to something on the order of 
�(R)�M.The above analysis shows that there is a lower limit on the orthogonality the QGSalgorithm 
an be expe
ted to attain. In [5℄, the author gave numeri
al examples thatsuggested that the algorithm would 
ome 
lose to this limiting a

ura
y, provided areorthogonalization step is in
luded [as it is in (1.3)℄. The purpose of this note is showby an informal rounding-error analysis that this is indeed the 
ase.This paper is organized as follows. In the next se
tion we dis
uss the e�e
ts of s
alingon the 
ondition of R and on sizes of the quantities in the QGS step. In Se
tion 3 wegive some numeri
al examples of the behavior of the QGS method to provide the readerwith a view of the goal of our informal analysis. In Se
tion 4 we show how the CGS stepbehaves in the absen
e of rounding error. This analysis is related to material in a paperby Ho�mann [3℄. The analysis proper is given in Se
tion 5 followed by a dis
ussion andan appendix.As above �M will denote the rounding unit and k�k the spe
tral norm. We will ignorese
ond and higher order terms in �M and indi
ate their omission by the substitution of`�=' for `=' and `<�' for `�'. We will use a generi
 
onstant h
i to make minor adjustmentsin our bounds or to restore `=' or `�'. Note that two appearan
es of h
i in an expressionneed not represent the same number.We will denote the 
olumn spa
e of X by R(X) and its orthogonal 
omplement byR(X)?. For any ve
tor v, we will writev = vX + v?;where vX is the orthogonal proje
tion of v ontoR(X) and v? is the orthogonal proje
tionof v onto R(X)?. We will measure the orthogonality of v to R(X) by the ratio�(v) = kvXkkv?k : (1.8)Note that �(v) is the the tangent of the angle between v? and R(X)?. Thus a smallvalue indi
ates that v has only a small 
omponent along R(X). Conversely, a largevalue indi
ates that v has only a small 
omponent in R(X)?.



The Quasi-Gram{S
hmidt Algorithm 5The QGS algorithm without reorthogonalization is related to the method of semi-normal equations for solving the least squares problemkx�Xrk22 = min :With reorthogonalization it is related to Bj�or
k's method [1℄ of 
orre
ted seminormalequations. However, both of these methods assume that the matrix R is the R-fa
torfrom a nearby matrix X + E, where kEk is of the order kXk�M. Bj�or
k gives anextensive error analysis; however, it does not seem adaptable to our problem of tra
kingthe orthogonality of the impli
it Q-fa
tor as the QGS method progresses.2. S
aling and magnitudeBefore beginning the analysis proper, we must dispose of some questions of s
aling andmagnitude. Let D = diag(d1; : : : ; dp) be any diagonal matrix with positive diagonalelements. Then Q = XR�1 = (XD)(RD)�1:Thus, without a�e
ting Q we 
an s
ale the 
olumns of X and R by arbitrary fa
tors.In parti
ular, by taking d1; : : : ; dp�1 = 1 and dp suÆ
iently small, we 
an make �(R)as large as we want. This means that the bound (1.7) on ~! 
an be made arbitrarilylarge. Thus for this bound to be informative, we must �nd a s
aling that minimizes�(R). Although this problem is unsolved, a remarkable theorem of van der Slui
e [7℄states that the 
onditions number of R is approximately minimized when the 
olumnsof R all have the same norm.It is also important to have a sense of the sizes of the quantities involved in ourbounds. Sin
e kQk2 = kQTQk = kI +Wk, we havep1� ! � kQk � p1 + !Moreover, XTX = RT(QTQ)R = RT(I +W )R. Hen
e,p1� ! kRk � kXk � p1 + ! kRk:Thus if ! is less than, say, 0:1, kXk, kQk, and kRk are approximately equal. Similarresults hold for the individual 
olumns of Q, X, and R.In what follows we will assume thatkXk = 1 and kxk = 1:This means that in expressions like kRk�M we 
an absorb the kRk in our generi
 
on-stant h
i, with a resulting simpli�
ation in the bounds. We will also assume that the
olumns xj of X all have the same norm. This means that the 
olumns of R all haveapproximately the same norm, whi
h, as we have seen above, is required to make ourresults meaningful.



6 The Quasi-Gram{S
hmidt Algorithm3. Three examplesTo help the reader follow the analysis of the QGS method we present three numer-i
al examples that illustrate the behavior of algorithm (1.3). In all three examples,four steps algorithm (1.3) are applied to a 50�5 matrix X = (x1 � � � x5) to orthog-onalize its 
olumns. Thus after the kth step, QR is the quasi-QR fa
torization ofX = (x1 � � � xk+1). The matri
es X were generated in the formX = USV Twhere U is an 50�5 random orthonormal matrix, V is a 5�5 random orthogonal matrixand S is a diagonal matrix 
ontaining the singular values of X. All 
omputations wereperformed in IEEE standard arithmeti
 with a rounding unit of about 2:2�10�16.In the �rst example, there is a sharp relative gap of about 10�6 between the se
ondand third singular values. The last two 
olumns in the table 
ontain the values of ! and�̂ = kR�1k�M for the Q and R after the QGS step. As we have 
onje
tured, they tra
kea
h other ni
ely.Moving a
ross the �rst row, we �nd that the se
ond 
olumn of x has a reasonable
omponent along the orthogonal 
omplement of the �rst 
olumn as measured by �x.One QGS step produ
es that 
omponent to almost full a

ura
y and the se
ond orthog-onalization is redundant. The new 50�2 matrix Q is almost fully orthonormal, and the
orresponding value of �̂ is near the rounding unit.The se
ond row tells a more interesting tale. The �rst two 
olumns of X approxi-mately span the subspa
e spanned by the singular ve
tors 
orresponding to the two largesingular values. This means that when x3 is orthogonalized in must approximately lie inthe spa
e spanned by the remaining singular ve
tors. Sin
e the 
orresponding singularvalues are small, x(3)? must be small and hen
e �x3 is large. In fa
t, it is so large that ittakes two QGS steps to make the result fully orthogonal. It is signi�
ant that �1 �= �̂�x.It is also signi�
ant that although b2 is fully orthogonal, some orthogonality is lost inthe passage to q. This loss is proportional to the in
rease in �̂.The third row illustrates yet another point. As in the �rst 
olumn we have �1 �= �̂�x.But in the reorthogonalization step the redu
tion stagnates: �2 is approximately equalto �̂. (The redu
tion also stagnates in the se
ond row. But sin
e �̂ is near the roundingunit, it 
annot be seen whether the stagnation is due to the size of �̂ or to the fa
t thatwe 
annot hope to orthogonalize beyond the rounding unit.)The se
ond example shows the same phenomenon in a gentler setting. The singulargrade smoothly without gaps from 1 to about 10�7. The values of �x re
e
t this grading.In all 
ases �1 �= �̂�x, but �2 is never mu
h less than �̂. At every step, some orthogonalityis lost in the passage from b2 to q and the loss is approximately proportional to thein
rease in �̂.



The Quasi-Gram{S
hmidt Algorithm 7Example 1: Singular values1:0e+00 7:2e�01 3:6e�07 1:0e�07 6:1e�08�̂ �x �1 �2 �q ! �̂new2:2e�16 6:7e+00 6:4e�16 2:1e�17 5:7e�16 8:6e�16 3:8e�153:8e�15 2:1e+05 1:2e�10 4:8e�16 3:2e�11 5:3e�11 7:5e�107:5e�10 3:8e+06 6:4e�06 5:3e�11 4:4e�10 4:2e�10 2:4e�092:4e�09 6:0e+06 2:4e�03 5:7e�11 4:2e�10 6:2e�10 3:7e�09Example 2: Singular values1:0e+00 1:4e�01 1:6e�03 4:6e�06 1:8e�07�̂ �x �1 �2 �q ! �̂new2:2e�16 6:8e+00 8:0e�16 5:3e�17 1:2e�16 4:6e�16 4:8e�154:8e�15 1:1e+04 3:0e�12 6:8e�17 3:4e�13 4:7e�13 7:6e�127:6e�12 6:9e+02 3:6e�09 1:9e�13 1:2e�11 1:5e�11 5:0e�115:0e�11 2:1e+06 1:3e�05 1:4e�12 4:4e�11 1:3e�10 1:3e�09Example 3: Singular values1:0e+00 4:6e�04 2:3e�07 1:2e�11 7:3e�162:2e�16 2:9e+03 1:8e�13 0:0e+00 1:4e�13 1:7e�13 2:0e�122:0e�12 4:3e+05 1:7e�07 2:7e�13 9:1e�11 1:3e�10 1:1e�091:1e�09 4:3e+10 9:0e+00 2:2e�09 2:6e�06 3:6e�06 2:6e�052:6e�05 3:8e+14 2:2e+05 1:1e+00 2:7e+03 1:0e+00 7:2e�05�̂ = kR�1k�M; �x = �(x); �1 = �(u1); �2 = �(b2); �q = �(q); ! = kI �QTQkFigure 3.1: Three examplesThe third example shows that QGS method 
an fail. The singular values are steeplygraded from 1 to about 10�15. The �rst three rows behave in the manner we have 
ometo expe
t. But in the fourth row the two orthogonalizations are not suÆ
ient to make�1 of the same order of magnitude of as �̂, and orthogonality in Q is lost. We 
ouldover
ome this problem by in
luding additional reorthogonalizations. But as we shallsee, there are good reasons for not doing so.To summarize, we must explain three things about the algorithm.1. Why do the orthogonalization steps enhan
e orthogonality by a fa
torof �̂?



8 The Quasi-Gram{S
hmidt Algorithm2. Why is �̂ a lower bound on the attainable orthogonality?3. Why is orthogonality lost in passing from b2 to q and why is it propor-tional to the in
rease in �̂?4. The exa
t QGS stepThe idea for our analysis is to show �rst that, absent rounding errors, repeated QGSsteps produ
e in
reasingly orthogonal ve
tors q. Then, in the next se
tion, we show thatrounding errors perturb that q by quantities of order kR�1k�M. There we also analyzethe formation of q from b2.Without rounding error, the QGS step without reorthogonalization 
an be writtenin the form y = (I �QQT)x � Px:Here we skip the last normalization step. As usual, de
omposex = xX + x? and y = yX + y?:The problem then is to �nd expressions for yX and y?.The ve
tor y? is easy to �nd. Let U? be any orthonormal basis for R(X)?. Theny? = U?UT?y= U?UT?(I �QQT)x= U?UT?x (sin
e UT?X = 0)= x?:In other words, multipli
ation by P does not 
hange the 
omponent of x along R(X)?.To determine yX we must 
onstru
t a spe
i�
 orthonormal basis for R(X). As abovelet W = QTQ� I and assume that ! = kWk < 1. Then I +W is positive de�nite andhas a positive de�nite square root (I +W ) 12 . It follows thatUX = Q(I +W )� 12is orthogonal. Sin
e the 
olumn spa
e of Q and X are the same, UX forms an orthonor-mal basis for the 
olumn spa
e of X.NowyX = UXUTX(I �QQT)x= UXUTX [I � UX(I +W ) 12 (I +W ) 12UTX ℄x (sin
e (I +W ) 12 is symmetri
)= UX [I � (I +W )℄UTXx= UXWUTXx= UXWUTXxX (sin
e UXx? = 0).



The Quasi-Gram{S
hmidt Algorithm 9It follows that kyXk � !kxXk:In other words, multipli
ation by I � QQT redu
es the 
omponent along R(X) by afa
tor of at least !.The 
onsequen
e of all this is that the repeated appli
ation of the QGS step produ
esa sequen
e of ve
tors that 
onverges to y?|or with normalization to y?=ky?k. Therate of 
onvergen
e is that of the approa
h of !k to zero with in
reasing k. It remainsto determine to what extent rounding error limits this 
onvergen
e.5. The e�e
ts of rounding errorWe now aassume that the QGS step (1.3) without reorthogonalization is 
omputedin 
oating-point arithmeti
 with rounding unit �M. We assume that the arithmeti
 isstandard in the sense that
(a Æ b) = (a Æ b)(1 + �); j�j � j�Mj; Æ = +;�;�;�;where 
(a Æ b) denotes the 
omputed value of a Æ b.Using standard te
hniques of rounding error analysis, we have the following relationsamong the 
omputed values:a = (X +E)Tx; kEk � h
ikXk�M;r = (R+ F )�Ta; kFk � h
ikRk�M;b = (R+G)�1r; kGk � h
ikRk�M;~u = x� (X +H)b+ h; kHk � h
ikXk�M;khk � h
ikxk�M:Here we have assumed that k~uk � kxk, whi
h is reasonable in this 
ontext. Sin
e byour s
aling we have insured that the norms of X, R, and x are near one, we we mayabsorb their norms into h
i and use the simpler boundskEk; kFk; kGk; kHk; khk � h
i�M:Let us denote the 
omposite mapping from x to ~u by ~P . Then up to se
ond orderterms in �M, we have ~P �= XR�1R�TXT+HR�1R�TXT�XR�1GR�1R�TXT�XR�1R�TFR�TXT+XR�1R�TET:



10 The Quasi-Gram{S
hmidt AlgorithmSin
e Q = XR�1, we may write~P �= P +HR�1QT �QGR�1QT �QFR�TQ+QR�TET:It follows that with u = (I � P )x and ~u = (I � ~P )x+ h we have~u = u+ e; (5.1)where kek � h
ikR�1kkxk�M = �kxk; (5.2)where � = h
ikR�1k�M:(Note that � di�ers from �̂ in Se
tion 3 only by the generi
 fa
tor h
i.) Thus the e�e
tof rounding error is to repla
e u = (I �QQT)x by u+ e, kek is bounded by �kxk.We have seen in the last se
tion that the iterated quasi-proje
tion (I�P )kx 
onvergesto a ve
tor orthogonal to R(X). We shall now show that the presen
e of the error e
auses the 
onvergen
e of the ve
torsxk = (I � ~P )kxto stagnate.We �rst note that the presen
e of e in (5.1) limits the size of of the orthogonalitymeasure �(x). Spe
i�
ally, from (5.2) and (1.8) we have thatp1 + �(x)2 � <� kekkx?k :If the quantity on the left is greater one, then kek must be larger than kx?k, and theaddition of e in (5.1) may obliterate x?, after whi
h there is no way to 
ompute it.Sin
e � will be small, the 
ondition p1 + �(x)2 � < 1 is tantamount to the 
ondition�(x)� < 1;and this is the form we will use in what follows. It is worth noting that this 
onditionis violated in the fourth row of Example 3 above.Turning now to the behavior of the xk, writex = x0 = x0X + x0?:By the results of the pre
eding se
tion,x1 � (I � ~P )x0 = (I � P )x1 + e0 �= x̂0X + x0? + e0 � x1X + x1?;



The Quasi-Gram{S
hmidt Algorithm 11where kx̂1Xk � !kx0Xk:Now suppose we have 
onstants �0, �0, and �0 satisfyingkx0Xk � �0 and �0 � kx0?k � �0:Then kx1Xk � !�0 + �kx0k � !�0 + �(kx0Xk+ kx0?k) � (�+ !)�0 + ��0:Similarly, kx1?k � ��i + (1 + �)�iand kx1?k � ���0 � ��0 + �0Thus if we set C = 0��+ ! � 0� 1 + � 0�� �� 11Aand de�ne 0��k�k�k1A = Ck0��0�0�01A ;then we have kxkXk � �k; and �k � kxk?k � �k:We shall be parti
ularly interested in the evolution of the ratio �k = �k=�k, whi
h isa bound on �(xk?). We 
an tra
e this if we know the eigensystem of C. Spe
i�
ally, letZ�1CZ = diag(�1; �2; �3) � �:be an eigende
ompostion of C. Let sk = (�k �k �k)T. If we set b = Z�1s0 so thats0 = Zb, then sk = Cks0 = CkZb = Z�kb = b1�k1z1 + b2�k2z2 + b3�k3z3:Thus we obtain an expli
it formula for the sk from whi
h their behavior as k in
reases
an be read o�.Under the assumption that � and ! are small, we 
an use perturbation theory todetermine approximations to the eigenvalues and eigenve
tors of C. Spe
i�
ally (seethe appendix for details), up to terms of order �2� �= diag(�+ !; 1 + �; 1) and Z �= 0� 1 � 0�� 1 0� �1 11A : (5.3)



12 The Quasi-Gram{S
hmidt AlgorithmMoreover, up to terms of order �2Z�1 �= 0�1 �� 0� 1 00 1 11AIt follows that if we take �0 = �0, thenb �= 0��0 � ��0��0 + �02�0 1AMoreover the ratio �k = �k=�k is�k �= b1(�+ !)k + b2�(1 + �)kb1�(� + !)k � b2(1 + �)k + b3= (�0 � �)(� + !)k + (1 + ��0)�(1 + �)k(�0 � �)�(� + !)k � (1 + ��0)(1 + �)k + 2 : (5.4)Let us look at the se
ond expression for �k more 
arefully under the assumptionsthat � = ! and that � is small. Note that this assumption is essentially an indu
tionhypothesis. For it says that the loss of orthogonality in Q is of the same order ofmagnitude as the 
ondition number of R times �M|just the proposition we are tryingto establish.Both the numerator and denominator in the se
ond expression in (5.4) have termsthat are 
onverging to zero as (2�)k |that is rapidly. They both also have terms thatremain essentially 
onstant, sin
e (1 +�)k is near one. The ratios of these latter terms,1 + ��01� ��0� (5.5)approximate the value of � at whi
h the values of �k stagnates. For��0 < 0:1 (5.6)this value is essentially �. For greater values, the limiting value of �k be
omes greater,blowing up as ��0 approa
hes one.The rate of the approa
h to stagnation is 
ontrolled by the the term (�0 � �)(2�)k .Spe
i�
ally, stagnation o

urs when �0(2�)k � �. For �0 = 1, this happens essentiallywhen k = 1. However, as �0 grows, we will generally need k = 2 to a
hieve stagnation.This suggests that that if (5.6) is satis�ed then only one reorthogonalization in the QGSalgorithm is needed to to attain the best possible orthogonalization.
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hmidt Algorithm 13�0 1:000e+00 1:000e+01 1:000e+02 1:000e+03 1:000e+04 1:000e+05�1 3:000e�06 2:100e�05 2:010e�04 2:003e�03 2:020e�02 2:222e�01�2 1:000e�06 1:000e�06 1:001e�06 1:006e�06 1:061e�06 1:667e�06�3 1:000e�06 1:000e�06 1:000e�06 1:002e�06 1:020e�06 1:222e�06�min 1:000e�06 1:000e�06 1:000e�06 1:002e�06 1:020e�06 1:222e�06Figure 5.1: The progress of � for � = ! = 10�6Figure 5.1 shows the values of �k for � = ! = 10�6 and for �0 = 10i (i = 0; : : : ; 5).The row labeled �min 
ontains the value (5.5) at whi
h the orthogonalization stagnates.It is seen that even when �� = 0:1, one reorthogonalization is suÆ
ient to put � in theball park, and a se
ond makes it equal to �min to four digits. Sin
e (5.6) is satis�ed, therise of �min as �0 in
reases is gradual and insigni�
ant.With two steps of orthogonalization, we have 
omputed the ve
tor u2 at step 8in (1.3), whi
h satis�es �(u2) �= �. However, as we have mentioned, we do not useq2 = u2=� as our q. Instead we de�ne it as the last 
olumn of (1.4). Mathemati
ally,this amounts to settingu = x�XR�1r = XR�1(r1 + r2): and q = u=�: (5.7)Thus we must evaluate the degree of orthonormality of the matrix (Q q). Let(Q q)T(Q q) = �W wwT �� :Sin
e we know kWk = ! we must bound kwk and j1� �j.From our rounding error analysis we know thatu2 = x�X[(R +E1)�1r1 + (R+E2)r2℄;where kEik � h
i�M. It follows from (5.7) thatg = u� u2 �= �XR�1E1R�1r1 �XR�1E2R�1r2 = Q(E1R�1r1 +E2R�1r2):Remembering that kQk, and kr1k are near one and that kr2k � h
ikr1k, we havekgk � h
ikR�1kkrk�M:To bound kwk, observe that �(u2) = ku(2)X =u(2)? k �= �, whi
h we assume is small.This implies that ku(2)X k �= �ku(2)? k �= �ku2k = ��:
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hmidt AlgorithmOn the other handQTu = QT(u2 + g) = QT(u(2)X + u(2)? + g) = QT(u(2)X + g);Hen
e kQTuk � h
i(�� + kR�1kkrk�M):and kwk = kQTuk=� � h
i(� + ��1kR�1kkrk�M):Sin
e � = h
ikR�1k�M,kwk � h
i(� + ��1kR�1kkrk�M) = h
i�(1 + ��1krk): (5.8)To bound 1� �, we �rst observe that sin
e � is the 
omputed value of ku2k��1ku2k = 1 + h
i�M:� = ��2(u2 + g)T(u2 + g)= ��2(uT2 u2 + 2uTg + gTg)= 1 + h
i�M + 2��2uT2 g + ��2gTg�= 1 + h
i�M + 2��2uT2 gHen
e j1� �j � h
i(1 + ��1kR�1kkrk)�M: (5.9)To interpret bounds (5.8) and (5.9) letRnew = �R r0 �� :It then follows from (1.4), that the bounds are themselves bounded by h
ikR�1newk. Sin
ekRnewk �= 1, they are also bounded by h
i�(Rnew). In other words the deterioration inorthogonality in the 
urrent Q is bounded by a multiple of the 
ondition number of the
urrent R, whi
h is what we set out to establish.6. Dis
ussionWe are now in a position to answer the three questions raised at the end of Se
tion 3.1.The �rst two questions|why does ea
h orthogonalization de
rease � by a fa
tor �and why does the de
rease stop at �|are essentially answered by our analysis of these
ond expression in (5.4). We assume that � = !, but, as we have pointed out, this isessentially an indu
tion hypothesis.
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hmidt Algorithm 15The answer third question|why is there a loss of orthogonality in passing from u2to q and why is it proportional to the in
rease in �|is more 
ompli
ated. In fa
t, therethere 
an be little loss of orthogonality. If, for example, x is orthogonal to R(X), r willbe small and � will be near one, so that the bounds (5.8) and (5.9) will not be mu
hlarger than �. On the other hand if there is a loss of orthogonality the last 
olumn ofR�1new must be bigger than R�1, whi
h will 
ause a proportional in
rease in �.In the the third example of Se
tion 3.1 we saw that unless ��x < 1, the QGS methodwith only a single reorthogonalization 
an fail. In our analysis of the pro
ess we saw thata slightly stronger 
ondition|��(x) < 0:1 should be imposed. Although additionalorthogonalizations 
an revive the pro
ess, they are of little avail. For when the 
onditionfails most of the information about x? is obliterated in the �rst orthogonalization.However, this requirement is not very important in the prin
ipal appli
ation of the QGSmethod, whi
h is to produ
e well-
onditioned low-rank approximations to a matrix. Onewould use 
olumn pivoting to bring in linearly independent (read small �) ve
tors andstop pro
ess before �=�M be
ame large.7. Appendix: The eigensystem of CIn this appendix we will determine approximations to the eigenvalues and eigenve
torsof the matrix C = 0��+ ! � 0� 1 + � 0�� �� 11Aunder the assumption that � and ! are small.One of the eigenvalues is exa
tly one, and its 
orresponding to the eigenve
tor is(0 0 1)T. The other two eigenvalues are the eigenvalues of the leading prin
ipal subma-trix ��+ ! �� 1 + �� :Using the quadrati
 formula, one 
an easily verify that these eigenvalues are �+!+O(�2)and 1 + �+O(�2).Be
ause the eigenvalue near zero is well separated from the ones near one and be
auseC is diagonal up to terms of order �, we 
an approximate the eigenve
tor 
orrespondingto the eigenvalue near zero by (1 � h
i)T, where � and h
i are O(�) [6, Se
tion 1.3.2℄.Write 0��+ ! � 0� 1 + � 0�� �� 11A0� 1�h
i1A �= (�+ !)0� 1�h
i1A :
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hmidt AlgorithmFrom the se
ond row of the relation, we get�+ (1 + �)� = (�+ !)�;and ignoring se
ond order terms, we get� = ��:Similarly, from the third row we get h
i = 0:Thus our se
ond eigenvalue and its eigenve
tor are ! + � and (1 �� 0)T.The remaining eigenve
tor 
annot be approximated so simply, sin
e its eigenvalue isnear the eigenvalue 1. Instead, we use the observation that if (�; x) is a right eigenpairof a matrix and (�; y) is a left eigenpair with � 6= �, then yHx = 0. Thus we willapproximate the left eigenve
tors 
orresponding to 1 and � + !. The eigenve
tor weseek is then the unique (up to a 
onstant multiple) ve
tor that is orthogonal to both.It 
an be easily veri�ed that the left eigenve
tor 
orresponding to 1 is (0 1 1)T.An approximation of the left eigenve
tor 
orresponding to �+! may be approximatedas above. The result is (1 �� 0)T. The ve
tor orthogonal to both these ve
tors is(� 1 �1)T.Colle
ting the above results, we obtain (5.3).8. A
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