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G. W. Stewart
ABSTRACT

Let the nxp (n > p) matrix X have the QR factorization X = QR, where R
is an upper triangular matrix of order p and @) is orthonormal. This widely
used decomposition has the drawback that @ is not generally sparse even
when X is. One cure is to discard () retaining only X and R. Products
like a = QTy = R~ X Ty can then be formed by computing b = X'y and
solving the system R'a = b. This approach can be used to modify the
Gram—Schmidt algorithm for computing ) and R to compute R without
forming @ or altering X. Unfortunately, this quasi-Gram—Schmidt algo-
rithm can produce inaccurate results. In this paper it is shown that with
reorthogonalization the inaccuracies are bounded under certain natural con-
ditions.

1. Introduction

This paper is concerned with the error analysis of an orthogonalization technique, called
the quasi-Gram—Schmidt method — or for short, the QGS method. In a previous paper
[6] the author has shown that this method can be combined with column pivoting to
yield low-rank approximations to sparse matrices.
To set the background let X be an nxp matrix with n > p. Then X has the QR
factorization
X =QR,

where Q1@ = I and R is upper triangular with positive diagonal elements. If X has full
column rank — as we will assume from now on— then this QR factorization is unique.

An important way of computing a QR factorization is the Gram—Schmidt algorithm
with reorthogonalization. The heart of the method is an algorithm for updating a QR
factorization. Suppose we know the QR factorization of X and wish to compute the
QR factorization of (X z), where z is independent of the columns of X. This can be
done as follows.

1. r=Q%
2. u=z—Qr

1.1
3. p=ul (L)
4. q=u/p
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Here the norm || - || is the vector 2-norm. We call this process a Gram-Schmidt step. It
is easy to show that if ¢, r, and p are computed exactly then

xa-@a(g )

is the QR factorization of (X z). The Gram-Schmidt algorithm consists of applying
Gram-Schmidt steps successively to the columns of a matrix to obtain its QR factor-
ization.

When the Gram—Schmidt step is executed in finite-precision floating-point arith-
metic, the vector ¢ may not be orthogonal to the columuns of ). Specifically, when there
is cancellation in statement 2 of (1.1), the trailing digits in the computed value of u will
be inaccurate, and « will deviate from orthogonalization in proportion to the degree of
cancellation.

The cure for this problem is to repeat the orthogonalization as follows.

1. r = QT.’L‘

2. ur=x—Qr

3. T9 = QTu1

4. ug = Uy — Q’I”Q (12)
5. r=r1+nr

6. p=usl

7. qg=u2/p

Typically this algorithmn exhibits the following behavior. The norm of ug is less
than the norm of z by a factor proportional to the degree of dependence of z on X.
The norm of wuy, on the other hand, is not much smaller than the norm of w, which
guarantees the orthogonality of ¢ to the column space of X. For more on the properties
of Gram-Schmidt with reorthogonalization, see [2, Section 2.2.4] or [4, Section 3.1.4]).!

A widely used variant of the QR decomposition is the pivoted QR-decomposition in
which

XP = QR,

where P is a permutation matrix the reorders the columns of X. The standard algorithm
for computing this decomposition [4, Section 5.2.1] tends to put strongly independent
columuns at the beginning of X P and is useful in generating low-rank approximations to
X. In [5] the author has shown how to adapt the Gram-Schmidt algorithm to compute
this decomposition. In this paper we will treat only the unpivoted algorithm, since the
underlying Gram—Schmidt step is the same in both algorithms.

! Atypically, us can fail to be orthogonal to the column space of x, in which case the reorthogonal-
ization process must be repeated.
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When X is large and sparse, the Gram—Schmidt algorithm is unsatisfactory. The
reason is that as the algorithm progresses, the new columns of () become less and less
sparse. A cure for this problem [5] is to recognize that, since Q@ = XR ™!, it is only
necessary to retain the matrix R. Products, such as r = Q"2 can be computed by first
computing ¢ = X Tz and then solving the system RTr = a. These considerations lead
to the following quasi-Gram-Schmidt (QGS) step with reorthogonalization
ag = X1z
Solve the system R'r; = a;

Solve the system Rb; = 1
Uy = — X b1

a9 — XTu1

Solve the system Rlry =ay
Solve the system Rby, = 79
Ug2 = U1 — X b2

r=1r1+79

p = [luz]|

It is important to note that we do not compute ¢ = ua/p. Instead we define ¢ to be the

last column of .
R r\ Rt —p iR 1r
(X x)<0 p) = (X :v)( , pp_l ); (1.4)

—

(1.3)

© XN T W

.—
e

that is,
q=p tx—p ' XRlr=pt(z—Qr). (1.5)

There is good reason to be wary of this algorithm. If R is ill-conditioned, the systems
in statements 2, 3, 6, and 7 may be solved inaccurately, and these inaccuracies could
compromise the orthogonality of Q = X R~!. In fact, something like this must happen.
For suppose we are given the correctly rounded R from the QR factorization of X. Then
R =R+ E, where

IE]| < YRl (1.6)

Here ¢, is the rounding unit (about 2.2-1071¢ in IEEE double-precision floating-point
arithmetic), || - || is the spectral norm, and -y is a constant depending on the dimensions
of X. Suppose we compute an approximation Q to Q using R + F but with no further
error. Noting that up to terms of order €2,

(R+E)'~R'-R'ER!,

we find that }
Q=XR+E)"'=Q—-QER™".
Hence

Q'O =2Q'Q-Q'QER™' —R'EQ"Q.
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Hence if we define
W=Q'Q-1
and take
w = [|W]|

as a measure the of nonorthonormality of (), then
5 Sw+21QQUIEIE] € w+ 2va(R)ew, (1.7)

where x(R) = |R||||R"!||. Thus, however small the value of w, the rounding of R is
likely to increase it to something on the order of yk(R)ey.

The above analysis shows that there is a lower limit on the orthogonality the QGS
algorithm can be expected to attain. In [5], the author gave numerical examples that
suggested that the algorithm would come close to this limiting accuracy, provided a
reorthogonalization step is included [as it is in (1.3)]. The purpose of this note is show
by an informal rounding-error analysis that this is indeed the case.

This paper is organized as follows. In the next section we discuss the effects of scaling
on the condition of R and on sizes of the quantities in the QGS step. In Section 3 we
give some numerical examples of the behavior of the QGS method to provide the reader
with a view of the goal of our informal analysis. In Section 4 we show how the CGS step
behaves in the absence of rounding error. This analysis is related to material in a paper
by Hoffmann [3]. The analysis proper is given in Section 5 followed by a discussion and
an appendix.

As above €, will denote the rounding unit and ||-|| the spectral norm. We will ignore
second and higher order terms in €y and indicate their omission by the substitution of
‘> for ‘="and ‘<’ for ‘<’. We will use a generic constant (y) to make minor adjustments
in our bounds or to restore ‘=" or ‘<’. Note that two appearances of () in an expression
need not represent the same number.

We will denote the column space of X by R(X) and its orthogonal complement by
R(X)*. For any vector v, we will write

v =0vx +v],

where vx is the orthogonal projection of v onto R(X) and v is the orthogonal projection
of v onto R(X)*. We will measure the orthogonality of v to R(X) by the ratio

(o) = Loxl (1.8)

ol

Note that 7(v) is the the tangent of the angle between v, and R(X)*. Thus a small
value indicates that v has only a small component along R(X). Conversely, a large
value indicates that v has only a small component in R(X)".
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The QGS algorithm without reorthogonalization is related to the method of semi-
normal equations for solving the least squares problem

|z — X7||3 = min.

With reorthogonalization it is related to Bjorck’s method [1] of corrected seminormal
equations. However, both of these methods assume that the matrix R is the R-factor
from a nearby matrix X + E, where ||E|| is of the order || X|ley. Bjorck gives an
extensive error analysis; however, it does not seem adaptable to our problem of tracking
the orthogonality of the implicit Q-factor as the QGS method progresses.

2. Scaling and magnitude

Before beginning the analysis proper, we must dispose of some questions of scaling and
magnitude. Let D = diag(dy,...,d,) be any diagonal matrix with positive diagonal
elements. Then
Q=XR'=(XD)RD)™".

Thus, without affecting ) we can scale the columns of X and R by arbitrary factors.
In particular, by taking di,...,dp—1 = 1 and d, sufficiently small, we can make x(R)
as large as we want. This means that the bound (1.7) on @ can be made arbitrarily
large. Thus for this bound to be informative, we must find a scaling that minimizes
k(R). Although this problem is unsolved, a remarkable theorem of van der Sluice [7]
states that the conditions number of R is approximately minimized when the columns
of R all have the same norm.

It is also important to have a sense of the sizes of the quantities involved in our
bounds. Since ||Q||? = |QT Q|| = ||I + W ||, we have

VIi—w<[Q £ vV1itw
Moreover, X' X = RY(QYQ)R = R*(I + W)R. Hence,
VI—w| R <[ X[} < VI+w]R].

Thus if w is less than, say, 0.1, || X||, ||Q]|, and ||R|| are approximately equal. Similar
results hold for the individual columns of @), X, and R.
In what follows we will assume that

IX[=1 and | = L.

This means that in expressions like ||R|ley, we can absorb the ||R]| in our generic con-
stant (), with a resulting simplification in the bounds. We will also assume that the
columns z; of X all have the same norm. This means that the columns of R all have
approximately the same norm, which, as we have seen above, is required to make our
results meaningful.
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3. Three examples

To help the reader follow the analysis of the QGS method we present three numer-
ical examples that illustrate the behavior of algorithm (1.3). In all three examples,
four steps algorithm (1.3) are applied to a 50x5 matrix X = (z; --- w5) to orthog-
onalize its columns. Thus after the kth step, QR is the quasi-QR factorization of
X =(x1 -+ xks+1). The matrices X were generated in the form

X=Usv"

where U is an 50x5 random orthonormal matrix, V' is a 5x5 random orthogonal matrix
and S is a diagonal matrix containing the singular values of X. All computations were
performed in IEEE standard arithmetic with a rounding unit of about 2.2-10716.

In the first example, there is a sharp relative gap of about 10~% between the second
and third singular values. The last two columuns in the table contain the values of w and
& = ||[R™!||ey for the Q and R after the QGS step. As we have conjectured, they track
each other nicely.

Moving across the first row, we find that the second column of = has a reasonable
component along the orthogonal complement of the first column as measured by 7,.
One QGS step produces that component to almost full accuracy and the second orthog-
onalization is redundant. The new 50x 2 matrix @ is almost fully orthonormal, and the
corresponding value of & is near the rounding unit.

The second row tells a more interesting tale. The first two columns of X approxi-
mately span the subspace spanned by the singular vectors corresponding to the two large
singular values. This means that when 3 is orthogonalized in must approximately lie in
the space spanned by the remaining singular vectors. Since the corresponding singular
values are small, .’L‘S:_))) must be small and hence 7., is large. In fact, it is so large that it
takes two QGS steps to make the result fully orthogonal. It is significant that 7, =2 &r,.
It is also significant that although by is fully orthogonal, some orthogonality is lost in
the passage to g. This loss is proportional to the increase in &.

The third row illustrates yet another point. As in the first column we have 11 = &7,.
But in the reorthogonalization step the reduction stagnates: 7o is approximately equal
to &. (The reduction also stagnates in the second row. But since & is near the rounding
unit, it cannot be seen whether the stagnation is due to the size of & or to the fact that
we cannot hope to orthogonalize beyond the rounding unit.)

The second example shows the same phenomenon in a gentler setting. The singular
grade smoothly without gaps from 1 to about 10~7. The values of 7, reflect this grading.
In all cases 71 = &1, but 79 is never much less than &. At every step, some orthogonality
is lost in the passage from by to g and the loss is approximately proportional to the
increase in &.
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~

&
2.2e—16
3.8e—15
7.5e—10
2.4e—09

~

&
2.2e—16
4.8e—15
7.6e—12
5.0e—11

2.2e—16
2.0e—12
1.1e—09
2.6e—05

& =R e,

1.0e+00

Tx
6.7e400
2.1e+05
3.8e4-06
6.0e+-06

1.0e+00

Tx
6.8e+4-00
1.1e4+04
6.9e+-02
2.1e+-06

1.0e+00

2.9e+03
4.3e+05
4.3e+10
3.8e+14

Ty = 7‘(37),

Example 1: Singular values

7.2e—01 3.6e—07

1 T2
6.4e—16 2.1e—17
1.2e—10 4.8e—16
6.4e—06 5.3e—11
2.4e—03 5.7e—11

1.0e—07

Tq
5.7e—16
3.2e—11
4.4e—10
4.2e—10

Example 2: Singular values

1.4e—01 1.6e—03

1 T2
8.0e—16 5.3e—17
3.0e—12 6.8e—17
3.6e—09 1.9e—13
1.3e—05 1.4e—12

4.6e—06

Tq
1.2e—16
3.4e—13
1.2e—11
4.4e—11

Example 3: Singular values

4.6e—04 2.3e—07

1.8e—13 0.0e-+00
1.7e—07 2.7e—13
9.0e+00 2.2e—09
2.2e+05 1.1e+00

1.2e—-11

1.4e—13
9.1e—11
2.6e—06
2.7e4+03

7‘1:T(U1), 7‘2:7'(()2),

Figure 3.1: Three examples

6.1e—08

8.6e—16
5.3e—11
4.2e—10
6.2e—10

1.8e—07

4.6e—16
4.7¢—13
1.5e—11
1.3e—10

7.3e—16

1.7e—13
1.3e—10
3.6e—06
1.0e+4-00

7 = 7(9),

&new
3.8e—15
7.5e—10
2.4e—09
3.7e—09

&new
4.8¢—15
7.6e—12
5.0e—11
1.3e—09

2.0e—12
1.1e—09
2.6e—05
7.2e—05

w=|I-Q"Qll

The third example shows that QGS method can fail. The singular values are steeply
graded from 1 to about 10~ !5, The first three rows behave in the manner we have come
to expect. But in the fourth row the two orthogonalizations are not sufficient to make
71 of the same order of magnitude of as &, and orthogonality in @ is lost. We could
overcome this problem by including additional reorthogonalizations. But as we shall
see, there are good reasons for not doing so.

To summarize, we must explain three things about the algorithm.

1. Why do the orthogonalization steps enhance orthogonality by a factor

of &?
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2. Why is & a lower bound on the attainable orthogonality?

3. Why is orthogonality lost in passing from by to ¢ and why is it propor-
tional to the increase in &7

4. The exact QGS step

The idea for our analysis is to show first that, absent rounding errors, repeated QGS
steps produce increasingly orthogonal vectors q. Then, in the next section, we show that
rounding errors perturb that ¢ by quantities of order |[R™!||ey,. There we also analyze
the formation of ¢ from bs.

Without rounding error, the QGS step without reorthogonalization can be written
in the form

y=(I-QQNz = Pu.

Here we skip the last normalization step. As usual, decompose
r=xx+z; and y=yx+y,.

The problem then is to find expressions for yx and y, .
The vector g, is easy to find. Let U, be any orthonormal basis for R(X)*. Then

y, =UUly

=UUT(I-QQ"z

=U,Ulx (since UTX = 0)

=T].
In other words, multiplication by P does not change the component of z along R(X)> .

To determine yx we must construct a specific orthonormal basis for R(X). As above

let W = QTQ — I and assume that w = ||[W|| < 1. Then I + W is positive definite and
has a positive definite square root (I + W)% It follows that

Ux = QU+W)2

is orthogonal. Since the column space of ) and X are the same, Ux forms an orthonor-
mal basis for the column space of X.
Now

yx = UxUx(I - QQM)x
= UxUL[I —Ux(I+W)2(I+W)2UL)z (since (I +W)?2 is symmetric)
= Ux[I — (I+ W)U z
= UxWULz
=UxWUxszy (since Uxz; = 0).
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It follows that
lyx || < wllzx]|.

In other words, multiplication by I — QQ™T reduces the component along R(X) by a
factor of at least w.

The consequence of all this is that the repeated application of the QGS step produces
a sequence of vectors that converges to y; —or with normalization to y, /||y, |. The
rate of convergence is that of the approach of w¥ to zero with increasing k. It remains
to determine to what extent rounding error limits this convergence.

5. The effects of rounding error

We now aassume that the QGS step (1.3) without reorthogonalization is computed
in floating-point arithmetic with rounding unit €,,. We assume that the arithmetic is
standard in the sense that

fi(aob) = (aob)(1+e¢), le| < lem], o=4+,—, X, +,

where fl(a o b) denotes the computed value of a o b.
Using standard techniques of rounding error analysis, we have the following relations
among the computed values:

a=(X+E), 1B < (M1 Xlen,
r=(R+F) ', IEN < (Ml Rllen,
b=(R+G)"r, IGI < (Ml Bllex,
= —(X+H)b+h [H|<)IX]ew,

18] < (P lzllex-

Here we have assumed that ||| < [|z||, which is reasonable in this context. Since by
our scaling we have insured that the norms of X, R, and x are near one, we we may
absorb their norms into () and use the simpler bounds

LEWL LEIL NG TE L R < (e

Let us denote the composite mapping from z to o by P. Then up to second order
terms in €,;, we have

P~ XR IR TxT
+HR 'R TXT
— XR'GR™'R™TXT
— XR'RT'FR™TXT
+XR 'R TET.
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Since Q = XR~!, we may write
PP+ HR Q" —QGR'QT —QFR'Q + QR "E".
It follows that with u = (I — P)z and @ = (I — P)z + h we have
U =1u-+e, (5.1)
where
lell < (MR llzllew = allz], (5.2)

where
a=(NIR ey

(Note that « differs from & in Section 3 only by the generic factor (y).) Thus the effect
of rounding error is to replace u = (I — QQ")z by u + e, ||¢|| is bounded by «l|z]|.

We have seen in the last section that the iterated quasi-projection (I—P)¥z converges
to a vector orthogonal to R(X). We shall now show that the presence of the error e
causes the convergence of the vectors

o = (I — P)kx

to stagnate.
We first note that the presence of e in (5.1) limits the size of of the orthogonality
measure 7(z). Specifically, from (5.2) and (1.8) we have that

If the quantity on the left is greater one, then ||e|| must be larger than ||z, ||, and the
addition of e in (5.1) may obliterate z, after which there is no way to compute it.
Since « will be small, the condition y/1 + 7(z)? @ < 1 is tantamount to the condition

T(x)a < 1,

and this is the form we will use in what follows. It is worth noting that this condition
is violated in the fourth row of Example 3 above.
Turning now to the behavior of the z*, write

xz:vO::rg(—i-x(j_.

By the results of the preceding section,

gt = -P)a® =T - Pt +e® =22% +2% + =2k + 2,
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where
1% < wllz% |-

Now suppose we have constants 79, (p, and 0y satisfying

lz% || <mo and G <[22 ]| < o

Then
o3 | < wno + al|z®|] < wno + allzX | + l22 1) < (@ +w)no + alo.
Similarly,
2 || < ami + (1 + )¢
and

[z || > —any — aco + 6o

Thus if we set

a+w a 0
C= a l+a 0
- —a 1
and define
Mk 1o
G| =C"[G|,
Ok to

then we have
e | < me, and O < [|l28 || < ¢

We shall be particularly interested in the evolution of the ratio 7 = /6y, which is
a bound on T(:U]i) We can trace this if we know the eigensystem of C'. Specifically, let

Z7'0Z = diag(\1, Mo, A3) = A.

be an eigendecompostion of C. Let sp = (nx Cx Ox)'. If we set b = Z7!sg so that
so = Zb, then

sp=CFsg = CHZb = ZA*b = by Mz + boXbzy + by AE 2.

Thus we obtain an explicit formula for the s, from which their behavior as k increases
can be read off.

Under the assumption that o and w are small, we can use perturbation theory to
determine approximations to the eigenvalues and eigenvectors of C. Specifically (see
the appendix for details), up to terms of order o

1 a O
A =diagla+w,l+a,1) and Z=|[-a 1 0 (5.3)
a -1 1
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Moreover, up to terms of order «

1 —a 0
Z7l'=la 10
0 11
It follows that if we take (y = 6y, then
no — aby
b= | ang + 6
26,

Moreover the ratio 7 = /0y is

 bila+w)f +ba(l+a)f
= prala + w)F —ba(1+ a)F + b3

(5.4)
(1o — @) (@ + w)f + (1 + am)a(l + a)*
(10 — @)a(a +w)k — (1 + ar)(l + a)k +2°

Let us look at the second expression for 7, more carefully under the assumptions
that @ = w and that « is small. Note that this assumption is essentially an induction
hypothesis. For it says that the loss of orthogonality in @ is of the same order of
magnitude as the condition number of R times €,, — just the proposition we are trying
to establish.

Both the numerator and denominator in the second expression in (5.4) have terms
that are converging to zero as (2a)* — that is rapidly. They both also have terms that
remain essentially constant, since (1 + a)* is near one. The ratios of these latter terms,

1+O[7'0
1—amn

« (5.5)
approximate the value of 7 at which the values of 7 stagnates. For

ary < 0.1 (5.6)

this value is essentially «. For greater values, the limiting value of 7, becomes greater,
blowing up as a7y approaches one.

The rate of the approach to stagnation is controlled by the the term (79 — a)(2a).
Specifically, stagnation occurs when 79(2a)* < a. For 79 = 1, this happens essentially
when & = 1. However, as 7y grows, we will generally need k£ = 2 to achieve stagnation.
This suggests that that if (5.6) is satisfied then only one reorthogonalization in the QGS
algorithm is needed to to attain the best possible orthogonalization.
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T0 1.000e4+-00 1.000e4+01 1.000e4+02 1.000e4+03 1.000e+04 1.000e+05
Ty 3.000e—06 2.100e—05 2.010e—04 2.003e—03 2.020e—02 2.222e—01
T 1.000e—06 1.000e—06 1.001e—06 1.006e—06 1.061e—06 1.667e—06
T3 1.000e—06 1.000e—06 1.000e—06 1.002e—06 1.020e—06 1.222e—06
Tmin 1.000e—06 1.000e—06 1.000e—06 1.002e—06 1.020e—06 1.222e—06

Figure 5.1: The progress of 7 for a = w = 10~

Figure 5.1 shows the values of 7, for @ = w = 1075 and for 7o = 10° (i = 0,...,5).

The row labeled Ty, contains the value (5.5) at which the orthogonalization stagnates.
It is seen that even when ar = 0.1, one reorthogonalization is sufficient to put 7 in the
ball park, and a second makes it equal to Tii, to four digits. Since (5.6) is satisfied, the
rise of Ty,iy as Tp increases is gradual and insignificant.

With two steps of orthogonalization, we have computed the vector ugs at step 8
in (1.3), which satisfies 7(u2) = «. However, as we have mentioned, we do not use
g2 = uy/p as our q. Instead we define it as the last column of (1.4). Mathematically,
this amounts to setting

u=z—XR 'r=XR(ri+r). and q=u/p. (5.7)
Thus we must evaluate the degree of orthonormality of the matrix (Q) ¢). Let
Qa'@a= ().
Since we know [|W]| = w we must bound ||w|| and |1 — v|.
From our rounding error analysis we know that
uy =z — X[(R+ Ey)"'ry + (R + Ey)ry,
where || ;]| < (7)em. It follows from (5.7) that
g=u—uy =2 —XR'E\R™'ri — XR'EyR7'ry = Q(E\R™'r1 + E3R™ry).
Remembering that ||@Q||, and ||r1|| are near one and that [|r2]] < (y)||r1]|, we have
lgll < MR lIrllew
To bound |Jw||, observe that 7(uy) = ||ug?)/uf)|| = «, which we assume is small.

This implies that
2 ~ 2 ~
1w = aflu? | = afjus|| = ap.
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On the other hand
Q'u=Q"(w +9) = Q" +ul +9) = Q"(Y +9),
Hence
1Q ull < (y)(cp + IRIl|7[lex)-
and
Jwll = 1Q ull/p < (¥)(a+ p~ IR | Il n)-
Since @ = (V)[R !||ex,

lwll < () (e + p IR lIrlles) = (a1 + o~ ir]). (5-8)

To bound 1 — v, we first observe that since p is the computed value of ||uz]|
pHluzll = 1+ ()en.

v=p"2(uz +g)" (uz + g)
= p2(ugug +2u"g + g"g)
=1+ (Y)en +2p %uz9+p %g"g
=1+ (Yew +20 2usyg
Hence

1 —v| < M@+ p IR HIIrlDen (5.9)
To interpret bounds (5.8) and (5.9) let

R r
= (1 7).

It then follows from (1.4), that the bounds are themselves bounded by (7)|| R, |- Since
|| Rnew|| = 1, they are also bounded by (y)rx(Rpew). In other words the deterioration in
orthogonality in the current @ is bounded by a multiple of the condition number of the

current R, which is what we set out to establish.

6. Discussion

We are now in a position to answer the three questions raised at the end of Section 3.1.
The first two questions— why does each orthogonalization decrease 7 by a factor «
and why does the decrease stop at a«— are essentially answered by our analysis of the
second expression in (5.4). We assume that a = w, but, as we have pointed out, this is
essentially an induction hypothesis.
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The answer third question — why is there a loss of orthogonality in passing from wus
to ¢ and why is it proportional to the increase in a—is more complicated. In fact, there
there can be little loss of orthogonality. If, for example, z is orthogonal to R(X), r will
be small and p will be near one, so that the bounds (5.8) and (5.9) will not be much
larger than «. On the other hand if there is a loss of orthogonality the last column of
Rl must be bigger than R~!, which will cause a proportional increase in a.

In the the third example of Section 3.1 we saw that unless a7, < 1, the QGS method
with only a single reorthogonalization can fail. In our analysis of the process we saw that
a slightly stronger condition— a7(xz) < 0.1 should be imposed. Although additional
orthogonalizations can revive the process, they are of little avail. For when the condition
fails most of the information about z, is obliterated in the first orthogonalization.
However, this requirement is not very important in the principal application of the QGS
method, which is to produce well-conditioned low-rank approximations to a matrix. One
would use column pivoting to bring in linearly independent (read small 7) vectors and
stop process before /e, became large.

7. Appendix: The eigensystem of C

In this appendix we will determine approximations to the eigenvalues and eigenvectors
of the matrix

a+w a 0
C= a 1+a 0
—« —a 1

under the assumption that o and w are small.
One of the eigenvalues is exactly one, and its corresponding to the eigenvector is
(0 0 1)T. The other two eigenvalues are the eigenvalues of the leading principal subma-

trix
a+w o
( « 1+ a> '

Using the quadratic formula, one can easily verify that these eigenvalues are a+w+0(a?)
and 1+ a + O(a?).

Because the eigenvalue near zero is well separated from the ones near one and because
C is diagonal up to terms of order «, we can approximate the eigenvector corresponding
to the eigenvalue near zero by (1 8 (y))*, where 8 and (y) are O(«) [6, Section 1.3.2].
Write

a+w a 0 1 1
a l+a 0 B |=Z(atw)| B
-~ —a 1) \(7) 97
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From the second row of the relation, we get
at+(l+a)f =(a+w)p,

and ignoring second order terms, we get

B =—a.

Similarly, from the third row we get

{(v)=0.

Thus our second eigenvalue and its eigenvector are w + o and (1 —a 0)7.

The remaining eigenvector cannot be approximated so simply, since its eigenvalue is
near the eigenvalue 1. Instead, we use the observation that if (A, z) is a right eigenpair
of a matrix and (u,y) is a left eigenpair with A\ # g, then y'z = 0. Thus we will
approximate the left eigenvectors corresponding to 1 and a + w. The eigenvector we
seek is then the unique (up to a constant multiple) vector that is orthogonal to both.

It can be easily verified that the left eigenvector corresponding to 1 is (0 1 1)T.
An approximation of the left eigenvector corresponding to « + w may be approximated
as above. The result is (1 —a 0)T. The vector orthogonal to both these vectors is
(@1 -1)7T.

Collecting the above results, we obtain (5.3).
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