H(div) Preconditioning for a Mixed Finite Element Formulation of the Stochastic Diffusion Problem

dc.contributor.authorElman, Howard
dc.contributor.authorFurnival, Darran G.
dc.contributor.authorPowell, Catherine E.
dc.date.accessioned2008-07-22T20:26:54Z
dc.date.available2008-07-22T20:26:54Z
dc.date.issued2008-06-27
dc.description.abstractWe study H(div) preconditioning for the saddle-point systems that arise in a stochastic Galerkin mixed formulation of the steady-state diffusion problem with random data. The key ingredient is a multigrid V-cycle for a weighted, stochastic H(div) operator, acting on a certain tensor product space of random fields with finite variance. We build on a multigrid algorithm described by Arnold, Falk, and Winther for the deterministic problem by varying the spatial discretization from grid to grid whilst keeping the stochastic discretization fixed. We extend the deterministic analysis to accommodate the modified H(div) operator and establish spectral equivalence bounds with a new multigrid V-cycle operator that are independent of the spatial and stochastic discretization parameters. We implement multigrid within a block-diagonal preconditioner for the full stochastic saddle-point problem, derive eigenvalue bounds for the preconditioned system matrices and investigate the impact of all the discretization parameters on the convergence rate of preconditioned MINRES.en
dc.format.extent300679 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1903/8287
dc.language.isoen_USen
dc.relation.ispartofseriesUM Computer Science Departmenten
dc.relation.ispartofseriesCS-TR-4918en
dc.relation.ispartofseriesUMIACSen
dc.relation.ispartofseriesUMIACS-TR-2008-15en
dc.titleH(div) Preconditioning for a Mixed Finite Element Formulation of the Stochastic Diffusion Problemen
dc.typeTechnical Reporten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
smfem-hdiv-tr.pdf
Size:
293.63 KB
Format:
Adobe Portable Document Format