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We study H(div) preconditioning for the saddle-point systems that arise in a stochastic Galerkin mixed
formulation of the steady-state diffusion problem with random data. The key ingredient is a multigrid
V-cycle for a weighted, stochastic H(div) operator, acting on a certain tensor product space of random
fields with finite variance. We build on the Arnold-Falk-Winther multigrid algorithm presented in [1] by
varying the spatial discretization from grid to grid whilst keeping the stochastic discretization fixed. We
extend the deterministic analysis to accommodate the modified H(div) operator and establish spectral
equivalence bounds with a new multigrid V-cycle operator that are independent of the spatial and
stochastic discretization parameters. We implement multigrid within a block-diagonal preconditioner for
the full stochastic saddle-point problem, derive eigenvalue bounds for the preconditioned system matrices
and investigate the impact of all the discretization parameters on the convergence rate of preconditioned
minres.

1. Introduction

In deterministic modeling of physical processes input variables that represent material properties, boundary
conditions, or source terms are assumed to be known explicitly. This results in deterministic partial differential
equations (PDEs) whose numerical solution can be effected via traditional discretization methods. In situations
where complete knowledge of an input variable is lacking, it is more fitting to pose the problem in a probabilistic
setting and solve the resulting stochastic PDEs. The present work is concerned with the numerical solution of the
stochastic steady-state diffusion equation written in mixed form. Here, the source of uncertainty is the diffusion
coefficient which is modeled as a random field with a prescribed mean and correlation function.

In the last few years there has been a great deal of interest in so-called stochastic Galerkin methods for solving
elliptic PDEs with random field coefficients (e.g., see [7], [2], [22]). This body of work has developed rigorous
analysis for the pioneering work [11] which advocates coupling a polynomial chaos basis for a subspace of random
functions with finite variance, with a traditional finite element spatial discretization. The advantage of this so-
called stochastic finite element methodology is that a single linear system needs to be solved, the solution to
which can be post-processed to obtain probabilistic information of interest. However, this system is typically
orders of magnitude larger than those obtained from corresponding deterministic models, and specialised solvers
are essential.

If the Galerkin discretization of the stochastic PDE in question is based on a primal weak formulation, the
resulting linear system is symmetric and positive definite. An efficient multigrid solver for those systems was
proposed in [13] and [8]. If the discretization is based on a mixed formulation, then we have to solve a large-scale
symmetric, indefinite system of equations which is more challenging. A mean-based preconditioning scheme was
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suggested in [9]. However, it loses efficiency if the variance of the random field coefficients is large relative to the
mean field.

In [1], Arnold et al. pointed out that the saddle-point matrices that arise from mixed finite element discretiza-
tions of the deterministic steady-state diffusion equation (with unit coefficients) have the same mapping properties
as a block-diagonal matrix whose blocks are discrete representations of the deterministic H(div) and L2 operators.
If exact solves are assumed, this matrix is known to provide a preconditioner for minres that yields convergence
independent of the spatial discretisation parameter. Computing the action of the inverse of the leading block is
not a trivial task, however, and so a multigrid algorithm for H(div) operators was suggested, leading to a practical
preconditioner. Other authors have also suggested deterministic H(div) multigrid algorithms (e.g., see [14], [24],
[12].) The work of Arnold et al. [1] is attractive, however, since it takes the form of a standard multigrid V-cycle
method with a specialised smoother.

In this work, we propose and analyse a new stochastic H(div) multigrid method. We extend the deterministic
analysis from [1] to accommodate a stochastic H(div) operator which is weighted by random diffusion coefficients,
and establish spectral equivalence bounds with the proposed multigrid V-cycle operator that are totally inde-
pendent of the spatial and stochastic discretization parameters. We implement multigrid within a block-diagonal
preconditioner for the full stochastic saddle-point system and investigate the impact of all the discretization pa-
rameters on the convergence rate of preconditioned minres. Numerical results are presented in §8 and we include
experiments with a cheaper variant of the analyzed method.

2. Stochastic Steady State Diffusion Problem

Here we introduce the stochastic PDE to be solved, derive a weak mixed formulation and an inf-sup stable
finite-dimensional problem. As noted in §1, the finite-dimensional problem is obtained by application of a Galerkin
finite element method with the solution variables being expressed using curtailed polynomial chaos expansions.
A semi-discrete formulation of the problem, that will be used in the subsequent analysis, is also introduced.

2.1. Boundary Value Problem. The stochastic steady-state diffusion equation with homogeneous Dirichlet
boundary value conditions is given by {

−∇ · (c∇p) = f in D ×Ω,
p = 0 on ∂D ×Ω,(1)

where D is the spatial domain, Ω is a sample space, c : D×Ω → R is the diffusion coefficient, and f : D×Ω → R
is the source function. The sample space in turn belongs to a probability space (Ω,F , P ) where F is a σ-algebra
and P is a probability measure. Note that the divergence and gradient operators are considered to act on spatial
components only. We will consider the spatial domain, D, to be a convex two-dimensional bounded open set with
piecewise smooth boundary. In particular we take D to be the interior of a polygon.

Often in solving the diffusion problem the quantity c∇p is of more interest than the quantity p. Instead of
seeking an approximation to p in (1) and then post-processing this to obtain an approximation to c∇p, a preferred
approach is to obtain an approximation for c∇p directly by converting the second order system to a first order
system. This is achieved by making the substitution ~u = c∇p which gives c−1~u−∇p = 0 in D ×Ω,

−∇ · ~u = f in D ×Ω,
p = 0 on ∂D ×Ω.

(2)

We will refer to p as the displacement and ~u as the flux.
In order to characterize the random aspect of the problem we start by assuming that c−1 is expressed as a

curtailed Karhunen-Loève expansion, i.e.

c(~x, ~ξ(ω))−1 = c0(~x) +
m∑

r=1

√
λrcr(~x)ξr(ω)(3)

where ξr, r = 1, . . . ,m, are assumed to be continuous, independent, and identically distributed random variables,
and (λr, cr) are acquired by solving an eigenvalue problem in the form of a Fredholm integral equation as discussed,
e.g., in [11]. Introducing the random vector ~ξ = (ξ1, . . . , ξm) and assuming that f = f(~x, ~ξ), we then define
F = σ(~ξ) which is understood to be the minimal σ-algebra generated by ~ξ. With the problem defined in this
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manner, then providing random fields p and ~u can be found that satisfy (2) the Doob-Dynkin lemma, which is
given e.g., in [5], tells us that they will be expressible as Borel functions of ~ξ for each ~x ∈ D, i.e. p = p(~x, ~ξ) and
~u = ~u(~x, ~ξ).

Now note, that given ξr(Ω) = Γ , r = 1, . . . ,m, and denoting the density function of ξr by ρr we have, for any
Borel function g = g(~y), ∫

Ω

g(~ξ(ω)) dP =
∫

Γ m

g(~y)ρ(~y) d~y(4)

where ρ(~y) = ρ1(y1) · · · ρm(ym) and d~y = dy1 · · · dym. Here ρ is the joint density function of ~ξ and the above
integrals represent the expected value of g(~ξ). As all the random fields in this paper are Borel functions of ~ξ for
each ~x ∈ D, (4) can be used to evaluate all integrals over the sample space, Ω, that appear in the sequel.

We will also assume that the reciprocal of the diffusion coefficient (and hence the diffusion coefficient itself) is
bounded between two positive constants almost everywhere, i.e.

amin ≤ c(~x, ~ξ(ω))−1 ≤ amax ∀~x ∈ D P -a.e.(5)

where by P -a.e. we mean that there exists a set E ∈ F with P (E) = 0 such that the proposition holds on the
complement of E.

2.2. Function Space Notation. We will make use of the Lesbesgue spaces L2 and L∞ on D and Ω, and the
Sobolev spaces Hm, where m is an integer, on D. These spaces and their associated inner products and norms
are defined in numerous texts, e.g., [10]. Note that when m = 0, Hm(D) = L2(D).

The spaces Hm(D)2 are understood to contain vector fields whose components are in Hm(D), i.e. given
~v = (v1, v2) ∈ Hm(D)2 then v1, v2 ∈ Hm(D). Inner products on these vector function spaces are defined by
summing the inner products on the components, i.e.

(~v, ~w)Hm(D)2 = (v1, w1)Hm(D) + (v2, w2)Hm(D),

with the induced norms following. The space H(div;D) is understood to be the space of functions in L2(D)2

whose divergence is in L2(D). It has the inner product

(~v, ~w)H(div;D) = (~v, ~w)L2(D)2 + (∇ · ~v,∇ · ~w)L2(D)

from which the norm || · ||H(div;D) is induced.
The random fields in this paper will live in tensor products of spaces defined on the spatial domain, D, with

spaces defined on the sample space, Ω. The space Hm(D)⊗ L2(Ω) is given by

Hm(D)⊗ L2(Ω) = {v : D ×Ω → R | Dγv ∈ L2(D)⊗ L2(Ω), |γ| ≤ m },

with inner product

(v, w)Hm(D)⊗L2(Ω) =
∑
|γ|≤m

∫
Ω

∫
D

Dγv Dγw,

where Dγv represents weak derivatives of v, i.e.

Dγv =
∂|γ|v

∂xγ1
1 ∂x

γ2
2

with γ = (γ1, γ2) ∈ N2 and |γ| = γ1 + γ2. This inner product induces the norm || · ||Hm(D)⊗L2(Ω). The spaces
Hm(D)2 ⊗L2(Ω) and H(div;D)⊗L2(Ω) are defined in an analogous fashion. Tensor products of Hilbert spaces
are discussed more formally in [2] and [21].

The space L∞(D)⊗L∞(Ω) is the space of all random fields on D×Ω whose absolute value has a finite essential
supremum. The norm associated with this space is defined via this essential supremum, i.e.

||v||L∞(D)⊗L∞(Ω) = ess. sup
(~x,ω)∈D×Ω

|v(~x, ω)|.

From this definition, we see that ||c−1||L∞(D)⊗L∞(Ω) ≤ amax, where amax is as in (5).
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2.3. Weighted H(div;D)⊗L2(Ω) Bilinear Form. We define the Hilbert space U to consist of the vector space
L2(D)2 ⊗ L2(Ω) paired with the inner product

(~v, ~w)U =
∫

Ω

∫
D

1
c
~v · ~w.

This induces the norm ||~v||U .
We define a weighted H(div;D)⊗ L2(Ω) bilinear form Λ: H(div;D)⊗ L2(Ω)×H(div;D)⊗ L2(Ω)→ R by

Λ(~v, ~w) = (~v, ~w)U + (∇ · ~v,∇ · ~w)L2(Ω)⊗L2(D).(6)

This differs from the standard H(div;D)⊗L2(Ω) bilinear form only by the weight c−1 in the first term. As c−1 is
bounded almost everywhere between two positive constants, as noted in (5), Λ(·, ·) induces a norm, to be denoted
as || · ||Λ. Note that this norm is equivalent to || · ||H(div;D)⊗L2(Ω).

2.4. Weak Formulation. Let c ∈ L∞(D) ⊗ L∞(Ω) and f ∈ L2(D) ⊗ L2(Ω). The weak formulation of the
first-order boundary value problem given in §2.1 is: find ~u ∈ H(div;D) ⊗ L2(Ω) and p ∈ L2(D) ⊗ L2(Ω) such
that

a(~u,~v) + b(p,~v) = 0 ∀~v ∈ H(div;D)⊗ L2(Ω),

b(q, ~u) = −l(q) ∀q ∈ L2(D)⊗ L2(Ω)

where

a(~v, ~w) = (~v, ~w)U , b(q,~v) = (q,∇ · ~v)L2(D)⊗L2(Ω), l(q) = (f, q)L2(D)⊗L2(Ω).

This will possess a unique solution, as shown in [4], providing that the bilinear forms a(·, ·) and b(·, ·) are con-
tinuous, a(·, ·) is coercive on the null-space of b(·, ·), and that there exists a constant β > 0, called the inf-sup
constant, such that

sup
~v∈H(div;D)⊗

L2(Ω)\{0}

b(q,~v)
||~v||H(div;D)⊗L2(Ω)

≥ β||q||L2(D)⊗L2(Ω) ∀q ∈ L2(D)⊗ L2(Ω).(7)

The continuity and coercivity conditions on a(·, ·) and b(·, ·) are readily demonstrated, with the conditions on
a(·, ·) being satisfied as a consequence of (5). The existence of β was established in [9] where, moreover, it was
shown to depend only on the spatial domain D and to be equal to its counterpart in the analogous deterministic
analysis.

2.5. Polynomial Chaos. The polynomial chaos expansion method, as pioneered in [11] and generalized in [22],
consists of constructing a finite-dimensional subspace of L2(Ω), here denoted by T , that is the span of the m-
variate polynomials from the Askey scheme of hypergeometric polynomials (discussed in [19]) that are orthogonal
with respect to the underlying probability measure. That is, T = span{χ1, . . . , χM} where∫

Ω

χk(~ξ)χl(~ξ) dP =
∫

Γm

χk(~y)χl(~y)ρ(~y) dy = κkδkl

and

M =
(m+ n)!
m!n!

.(8)

Note that if ρ is the density function corresponding to an m-dimensional Gaussian distribution, then the poly-
nomial chaos will consist of m-variate Hermite polynomials. If ρ is the density function corresponding to an
m-dimensional uniform distribution, then the polynomial chaos will consist of m-variate Legendre polynomials.
For polynomials corresponding to other distributions see [23].
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2.6. Finite Element Formulation. Let T = {41, . . . ,4K} be a triangulation on D. We assume that the
triangulation belongs to a family of triangulations that are quasi-uniform and shape regular. Let hk be the length
of the longest side of 4k and define h = maxhk to be the mesh parameter of T .

In the following we will use tensor products of finite dimensional vector spaces. Note that such spaces are
spanned by products of basis functions from the vector spaces that comprise the tensor product. The zeroth-
order Raviart-Thomas space is defined by

R = {~v ∈ H(div;D) | v|4k
∈ P0(4k)2 + P0(4k)~x }

where P0(4k) denotes polynomials of zero degree, i.e. constants on 4k. Let {~φ1, . . . , ~φNR
} be a basis of R and let

Q = span{ψ1, . . . , ψNQ
} be the set of piecewise constants on the triangulation T . Then R⊗T ⊂ H(div;D)⊗L2(Ω)

and Q⊗ T ⊂ L2(D)⊗L2(Ω). Note that R and Q are known to satisfy a discrete deterministic inf-sup condition,
as shown, for example, in [4] and [18].

The finite element formulation of the weak formulation given in §2.4 is given by: find ~uhn ∈ R ⊗ T and
phn ∈ Q⊗ T such that

a(~uhn, ~v) + b(phn, ~v) = 0 ∀~v ∈ R⊗ T,
b(q, ~uhn) = −l(q), ∀q ∈ Q⊗ T.

This possesses a unique solution under the same conditions that apply for the weak formulation. The discrete
continuity and coercivity conditions on a(·, ·) and b(·, ·) follow in an analogous way to the infinite-dimensional
case considered in §2.4. Existence and uniqueness is then assured if it can be shown that there exists a constant
βhn > 0 such that

sup
~v∈R⊗T\{0}

b(q,~v)
||~v||H(div;D)⊗L2(Ω)

≥ βhn||q||L2(D)⊗L2(Ω) ∀q ∈ Q⊗ T.(9)

The existence of βhn can be demonstrated by employing Fortin’s Lemma (see [3]) as follows. First we note that
by considering ∇ · ∇s = w where w ∈ L2(D) ⊗ T , it can be shown that there exists a unique ~z ∈ H1(D)2 ⊗ T
such that

||~z||H(div;D)⊗L2(Ω) ≤ CD||w||L2(D)⊗L2(Ω)

where CD is only dependent on the spatial domain. Using standard arguments it then follows that the constant
β > 0 satisfying (7) also satisfies a semi-discrete inf-sup condition given by

sup
~v∈H1(D)2⊗T\{0}

b(q,~v)
||~v||H(div;D)⊗L2(Ω)

≥ β||q||L2(D)⊗L2(Ω) ∀q ∈ L2(D)⊗ T.(10)

Now suppose there exists an operator Π : H1(D)2 ⊗ T → R⊗ T such that for each ~v ∈ H1(D)⊗ T ,

b(Π~v − ~v, q) = 0 ∀q ∈ L2(D)⊗ L2(Ω),

||Π~v||H(div;D)⊗L2(Ω) ≤ CΠ ||~v||H(div;D)⊗L2(Ω),

where CΠ is independent of h, m, and n. Then

sup
~v∈R⊗T\{0}

b(q,~v)
||~v||H(div;D)⊗L2(Ω)

= sup
~v∈H1(D)2⊗T\{0}

b(q,Π~v)
||Π~v||H(div;D)⊗L2(Ω)

= sup
~v∈H1(D)2⊗T\{0}

b(q,Π~v − ~v) + b(~v, q)
||Π~v||H(div;D)⊗L2(Ω)

≥ β

CΠ
||q||L2(D)⊗L2(Ω) ∀q ∈ Q⊗ T.

An operator Π satisfying the above properties is given by the Raviart-Thomas interpolation operator described
in §2.8. Therefore, the existence of the discrete inf-sup constant is established and, moreover, it is independent
of the discretization parameters h, m, and n.

In [6] the well-posedness of a stochastic saddle-point problem arising in the solution of a PDE with stochastic
boundary was analysed. In that work, an inf-sup stability result was established under the assumption that
a particular discrete stochastic space is chosen. Here, we note that (9) holds independently of the choice of
T ⊂ L2(Ω).
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2.7. Matrix Formulation. The finite element formulation given in §2.6 can be written as a matrix problem.
This is obtained by using the expansions

~uhn =
NR∑
j=1

M∑
l=1

ujl
~φjχl phn =

NQ∑
j=1

M∑
l=1

pjlψjχl(11)

and allowing ~v to vary over the basis functions of R ⊗ T and q to vary over the basis functions of Q ⊗ T . This
leads to a matrix problem of the form [

A BT

B 0

] [
u
p

]
=

[
0
f

]
.(12)

The matrices that appear in the system matrix can be decomposed as

A = G0 ⊗K0 +
m∑

r=1

√
λr Gr ⊗Kr, B = G0 ⊗B0,

with entries given by

[Gr]kl =
∫

Ω

ξrχkχl

(
=

∫
Γm

yrχkχlρ

)
,

[Kr]ij =
∫

D

cr ~φi · ~φj , [B0]ij =
∫

D

ψi∇ · ~φj ,

where ξ0 = 1 in the definition of G0. The vector f has entries given by

f =

 f1
...

fM

 , [fk]i = −
∫

Ω

∫
D

fψiχk.

The solution vector contains the coefficients of ~uhn and phn stacked columnwise. Once it has been computed we
have approximations to the random fields ~u and p that satisfy the weak formulation of the diffusion problem.
These approximations can then be post-processed to obtain probabilistic information about the solution variables.
The means and variances can be trivially computed, and the probability distributions of quantities of interest can
be computed via sampling of ~ξ.

2.8. Interpolation Operator. We here define a spatial interpolation operatorΠ : H1(D)2⊗L2(Ω)→ R⊗L2(Ω)
such that for each ω ∈ Ω, Π maps v(~x, ~ξ) to a function in R in the conventional manner (see e.g., [3, p. 147]), i.e.
Π acts only on the spatial components of the random fields in its domain and does so in a manner analogous to
its deterministic counterpart. To be more precise, we first define Πk : H1(4k)2 ⊗ L2(Ω)→ R⊗ L2(Ω) such that
for ~v ∈ H1(4k)2 ⊗ L2(Ω),∫

ei

(~v −Πk~v) · ~ni = 0, i = 1, 2, 3, ∀ω ∈ Ω,

where ei, i = 1, 2, 3, are the edges of 4k, and ~ni, i = 1, 2, 3 are the respective unit normal vectors to these edges.
Then Π is defined such that for ~v ∈ H1(D)2 ⊗ L2(Ω),

(Π~v)|4k
= Πk(~v|4k

).

Following [1], we have the approximation property

||~v −Π~v||L2(D)2 ≤ C0h||~v||H1(D)2 ∀ω ∈ Ω,

where C0 is a constant. Squaring and integrating over Ω gives

||~v −Π~v||L2(D)2⊗L2(Ω) ≤ C0h||~v||H1(D)2⊗L2(Ω).(13)
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2.9. Semi-Discrete Formulation. We here introduce a semi-discrete formulation of the weak formulation of
the diffusion problem where only the stochastic space T ⊂ L2(Ω) is finite-dimensional. This is given by: find
~un ∈ H(div;D)⊗ T and pn ∈ L2(D)⊗ T such that

a(~un, ~v) + b(pn,∇ · ~v) = 0 ∀v ∈ H(div;D)⊗ T,
b(q,∇ · ~un) = −l(q) ∀q ∈ L2(D)⊗ T.

This possesses a unique solution under an analogous set of conditions as for the weak formulation and the finite
element formulation discussed in §2.4 and §2.6 respectively. In particular, the inf-sup condition that is required,
over the relevant semi-discrete space, was established in §2.6 and is given by (10).

In order to obtain a bound on the error between the flux solutions to the semi-discrete and the fully discrete
problems we make the following assumption. Given f ∈ L2(D) ⊗ T we assume that ~un ∈ H1(D)2 ⊗ T and that
for each realization of ~ξ,

||~un||H1(D)2 ≤ Cr||f ||L2(D),

from which it follows that

||~un||H1(D)2⊗L2(Ω) ≤ Cr||f ||L2(D)⊗L2(Ω).(14)

Theorem 1. Given f ∈ L2(D)⊗T , then the flux solution to the semi-discrete problem, ~un, and the flux solution
to the fully discrete problem, ~uhn, satisfy

||~un − ~uhn||U ≤ C∗h||f ||L2(D)⊗L2(Ω),

where C∗ is independent of h, m, and n, and amax is as in (5).

Proof. Using the upper bound on c−1 in (5) and following [4] we have

||~un − ~uhn||U ≤ a1/2
max||~un − ~uhn||L2(D)⊗L2(Ω)

≤ a1/2
maxC? inf

~v∈R⊗T
||~un − ~v||L2(D)⊗L2(Ω)

where C? is a constant. Now, as Π~un ∈ R⊗ T , using (13) and (14) we have

||~un − ~uhn||U ≤ a1/2
maxC?C0h||~un||H1(D)2⊗L2(Ω)

≤ a1/2
maxC?C0Crh||f ||L2(D)⊗||L2(Ω)

which demonstrates the theorem with C∗ = a
1/2
maxC?C0Cr. �

3. Helmholtz Decomposition, Projection and H(div;D) Operators

In this section we describe a Helmholtz decomposition of ~v ∈ R⊗T analogous to its deterministic counterpart
given in [1]. We also introduce some projection operators and a weighted H(div;D) ⊗ L2(Ω) operator which,
along with the Helmholtz decomposition, will be used in §§5, 6 and 7.

3.1. Helmholtz Decomposition. Let W = span{ϕ1, . . . , ϕNW
} be the set of piecewise linear functions defined

on the triangulation T . Here NW will equal the number of nodes in the triangulation. It is well known, e.g, see
[1], that

{~v ∈ R | ∇ · ~v = 0 } = {∇ × w | w ∈W }.
As divergence and curl are purely spatial operators, i.e. they don’t affect the stochastic nature of the random
fields they act upon, it follows that

{~v ∈ R⊗ T | ∇ · ~v = 0 } = {∇ × w | w ∈W ⊗ T }.(15)

Here ∇× w = (−∂w/∂x2, ∂w/∂x1).
We now define a weighted discrete gradient operator (cf. [1, eq. (3.1)]), denoted gradc

h : Q⊗ T → R⊗ T , such
that for q ∈ Q⊗ T ,

(gradc
h q,~v)U = −(q,∇ · ~v)L2(D)⊗L2(Ω) ∀~v ∈ R⊗ T.(16)

The superscript c denotes the dependence of the operator on the random field c through the definition of (·, ·)U .
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Theorem 2. (Helmholtz Decomposition) Given ~v ∈ R⊗ T , there exists q ∈ Q⊗ T and w ∈W ⊗ T such that

~v = gradc
h q +∇× w.(17)

Proof. To establish the given decomposition it is sufficient to show that gradc
h (Q ⊗ T ) and ∇ · (W ⊗ T ) are

orthogonal complements on R⊗ T with respect to (·, ·)U . To see this, let w ∈W ⊗ T , then

∇ · (∇× w) = 0⇔ (∇ · (∇× w), q)L2(D)⊗L2(Ω) = 0 ∀q ∈ Q⊗ T
⇔ (∇× w, gradc

h q)U = 0 ∀q ∈ Q⊗ T

⇔ ∇× w ∈ (gradc
h (Q⊗ T ))⊥.

�

Note that, for q ∈ Q ⊗ T and w ∈ W ⊗ T , gradc
h q and ∇× w are also orthogonal with respect to (·, ·)Λ, where

(·, ·)Λ is as defined in §2.3.

3.2. Projection Operators. We define the projection operator Θ : L2(D)⊗L2(Ω)→ Q⊗ T such that for each
v ∈ L2(D)⊗ L2(Ω),

(Θv, q)L2(D)⊗L2(Ω) = (v, q)L2(D)⊗L2(Ω) ∀q ∈ Q⊗ T.
The operator Θ affects both the spatial and the stochastic aspect of the random fields on which it operates. It
will be in our interest to define an operator that only affects the spatial aspect of the random fields it acts upon.
Therefore, we define Σ : L2(D)⊗ L2(Ω)→ Q⊗ L2(Ω) such that for each v ∈ L2(D)⊗ L2(Ω),

(Σv, q)L2(D) = (v, q)L2(D) ∀q ∈ Q ∀ω ∈ Ω,

that is, for each ω ∈ Ω, Σ is the L2(D)-projection of v(~x, ~ξ) onto Q. It can then be shown that given ~v ∈
H1(D)2 ⊗ L2(Ω) we have the commutativity property

∇ ·Π~v = Σ∇ · ~v, ∀ω ∈ Ω,

the proof of which follows that given in [3] for the deterministic case. Using this we also have for ~v ∈ R⊗ T and
q ∈ Q⊗ T ,

(Θ∇ · ~v, q)L2(D)⊗L2(Ω) =
∫

Ω

(∇ · ~v, q)L2(D) =
∫

Ω

(Σ∇ · ~v, q)L2(D)(18)

=
∫

Ω

(∇ ·Π~v, q)L2(D) = (∇ ·Π~v, q)L2(D)⊗L2(Ω),

which is analogous to the deterministic result given in [1].
We define P : H(div;D)⊗ L2(Ω)→ R⊗ T such that for each ~w ∈ H(div;D)⊗ L2(Ω),

Λ(P ~w,~v) = Λ(~w,~v) ∀~v ∈ R⊗ T.

That is, P is the projection operator onto R⊗ T defined with respect to Λ(·, ·).

3.3. Weighted H(div;D)⊗ L2(Ω) Operator. We next define the weighted
H(div;D)⊗ L2(Ω) operator H : R⊗ T → R⊗ T such that for each ~w ∈ R⊗ T ,

(H~w,~v)U = Λ(~w,~v) ∀~v ∈ R⊗ T.

Note that H is a positive-definite symmetric operator, therefore we can define its inverse H−1 : R ⊗ T → R ⊗ T
such that for each ~w ∈ R⊗ T ,

Λ(H−1 ~w, v) = (~w,~v)U ∀~v ∈ R⊗ T.

Note also that H maps gradc
h (Q ⊗ T ) onto itself. To see this, let ~w = gradc

h q for some q ∈ Q ⊗ T . Then, using
(6) and (16),

(H~w,~v)U = (gradc
h q,~v)U + (∇ · gradc

h q,∇ · ~v)L2(D)⊗L2(Ω)

= (gradc
h q,~v)U − (gradc

h∇ · gradc
h q,~v)U

= (gradc
h (q −∇ · gradc

h q), ~v)U ∀~v ∈ R⊗ T.

8



As q−∇ · gradc
h q ∈ Q⊗ T it follows that given q ∈ Q⊗ T there exists q′ ∈ Q⊗ T such that Hgradc

h q = gradc
h q

′.
Similarly, for q ∈ Q⊗ T , it can be shown that there exists q′ ∈ Q⊗ T such that H−1gradc

h q = gradc
h q

′.

4. Solving the First Order Diffusion Problem

The coefficient matrix given in (12), denoted here by C, is sparse, symmetric, and indefinite. Hence, a
suitable solution scheme is the minres algorithm, described e.g., in [15]. This is a Krylov subspace method that
minimizes the Euclidean norm of the residual error at each step. In order to ensure that the iteration is efficient,
preconditioning is essential. Ideally, we want the number of minres iterations required to reduce the error to
within a specified tolerance to be independent of all the discretization parameters, and so we seek a preconditioner
P such that the eigenvalues of P−1C are independent of the discretization parameters h, n, and m.

4.1. Deterministic H(div;D) preconditioning. Recall that in the deterministic diffusion problem, where the
diffusion coefficient, c = c0(~x), and the source function, f = f0(~x), are known (deterministic) fields, the standard
mixed Galerkin discretisation gives rise to a linear system of the form

(19)
[
K0 BT

0

B0 0

] [
u0

p0

]
=

[
0
f0

]
,

where B0 ∈ RNQ×NR and K0 ∈ RNR×NR are defined as in §2.7. The so-called ideal H(div;D) preconditioner
given by

P0 =
[
K0 +D0 0

0 N0

]
,(20)

where D0 ∈ RNR×NR and N0 ∈ RNQ×NQ are defined via

[D0]ij =
∫

D

(∇ · ~φi)(∇ · ~φj), [N0]ij =
∫

D

ψiψj ,

was proposed in [1] for the case c0(~x) = 1 and subsequently analysed in [17] and [16] for arbitrary diffusion
coefficients. This choice of preconditioner is motivated by the observation that ∀~v ∈ R and ∀q ∈ Q,

||c− 1
2~v||2L2(D)2 + ||∇ · ~v||2L2(D) = (v, (K0 +D0)v), ||q||2L2(D) = (q, N0q).

Consequently, the diagonal blocks of P0 provide representations of a pair of norms in which the chosen mixed
finite element discretization is known to be inf-sup stable (see [4, 18]). Hence, P0 mimics the mapping properties
of the underlying saddle-point matrix. The following theorem gives bounds for the eigenvalues of P−1

0 C0, where
C0 is the system matrix in (19).

Theorem 3. The NR +NQ eigenvalues of[
K0 BT

0

B0 0

] [
v
q

]
= ν

[
K0 +D0 0

0 N0

] [
v
q

]
,

lie in (−1,−µ0] ∪ {1}, where µ0 ∈ (0, 1) is a constant independent of h.

Proof. See [17]. �

To obtain a practical scheme we need to approximate the action of the inverse of K0 +D0. Suppose then that
there exists some (any) matrix V0 satisfying,

θ0 ≤
(v, (K0 +D0)v)

(v, V0v)
≤ θ0 ≤ 1, ∀v ∈ RNR×NR\ {0} ,(21)

where (·, ·) indicates the Euclidean inner product. The following theorem gives bounds for the eigenvalues of the
preconditioned system obtained by replacing K0 +D0 in (20) with V0.

Theorem 4. The (NR +NQ) eigenvalues of[
K0 BT

0

B0 0

] [
v
q

]
= ν

[
V0 0
0 N0

] [
v
q

]
,
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lie in (
−1,

1
2

(
θ0 (1− µ0)−

√
θ20 (µ0 − 1)2 + 4µ0θ0

)]
∪ [ θ0, 1 ] ,

where µ0 is the quantity defined in Theorem 3 and θ0 is the constant from (21).

Proof. See [16]. �

In [1], Arnold et el. demonstrated that, in the case c0(~x) = 1, choosing V0 to be the matrix that represents
the inverse of a certain multigrid V-cycle operator yields θ0 = 1 − δ0 and θ0 = 1 in (21), where δ0 is a constant
independent of h. Theorem 4 then tells us that the preconditioner[

V0 0
0 N0

]
(22)

is h-optimal. For a general diffusion coefficient both µ0 and δ0 depend on c0(~x) and in [16] it was shown that
(22) is not always c-optimal.

4.2. Stochastic H(div;D) ⊗ L2(Ω) preconditioning. We base our preconditioning strategy for (12) on the
deterministic preconditioner described in §4.1. That is, we define, first, the analogous ideal preconditioner

P =
[
A+ F 0

0 N

]
(23)

where A is the (1, 1) block of (12), F = G0⊗D0 and N = G0⊗N0. Now, ∀~v ∈ R⊗T and ∀q ∈ Q⊗T, the blocks
of the preconditioner provide representations of the tensor product norms,

||~v||2Λ = (v, (A+ F )v), ||q||2L2(D)⊗L2(Ω) = (q, Nq).

The efficiency of this preconditioner can be analysed in exactly the same way as in the deterministic case. Recalling
that M is the dimension of the stochastic space T defined in §2.5, and NR and NQ are the dimensions of the
deterministic spaces R and Q defined in §2.6, we have the following theorem.

Theorem 5. The M × (NR +NQ) eigenvalues of the generalised eigenvalue problem,[
A BT

B 0

] [
v
q

]
= ν

[
A+ F 0

0 N

] [
v
q

]
lie in (−1,−µ] ∪ {1}, where µ ∈ (0, 1) is a constant independent of h, m, and n.

Proof. The proof follows that for the deterministic case and will be given here in outline. First note that since
∇ ·R = Q, we have D0 = BT

0 N
−1
0 B0 and

BTN−1B = (G0 ⊗B0)
T (G0 ⊗N0)

−1 (G0 ⊗B0)

= G0 ⊗
(
BT

0 N
−1
0 B0

)
= G0 ⊗D0 = F.

It immediately follows that there are MNR eigenvalues equal to one. The remaining eigenvalues are negative and
satisfy

B (A+ F )−1
BT q = −νNq.

Now, using (9) along with the equivalence of || · ||H(div;D)⊗L2(Ω) and || · ||Λ gives

βhn||q||L2(D)⊗L2(Ω) ≤
1

min{1, a−1/2
max }

sup
~v∈R⊗T\{0}

b(q,∇ · ~v)
||~v||Λ

∀q ∈ Q⊗ T.

Converting this to matrix notation one then obtains

β2
hnmin{1, a−1

max} ≤
(q, B(A+ F )−1BT q)

(q, Nq)
∀q ∈ RM×NQ .

Therefore, we can choose µ = β2
hnmin{1, a−1

max}. �
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To obtain a practical preconditioning scheme, we need a computationally optimal way to approximate the
inverse of A+ F in each minres iteration. If we have at our disposal a matrix V that satisfies

(24) θ ≤ (v, (A+ F )v)
(v, V v)

≤ θ ≤ 1, ∀v ∈ RMNR\ {0} ,

then the analogue of Theorem 4 holds. Specifically, we have the following result.

Theorem 6. The M × (NR +NQ) eigenvalues of[
A BT

B 0

] [
v
q

]
= ν

[
V 0
0 N

] [
v
q

]
,

lie in (
−1,

1
2

(
θ (1− µ)−

√
θ2 (µ− 1)2 + 4µθ

)]
∪ [ θ, 1 ] ,

where µ is as in Theorem 5 and θ is the constant from (24).

Proof. Follow the proof of Theorem 4.1 in [16] replacing deterministic matrices with their larger Kronecker product
counterparts. �

In the next sections, we will extend the deterministic analysis presented in [1] to construct a hybrid multigrid
V-cycle operator, V : R ⊗ T → R ⊗ T whose matrix representation V provides spectral equivalence bounds (24)
for A+ F with constant θ = 1 and θ = 1− δ where δ is a constant independent of h, m, and n. The efficiency of
the resulting preconditioner,

(25)
[
V 0
0 N

]
,

is then determined by the spectral inclusion bounds in Theorem 6.

5. Two-grid Results

In the following, two triangulations on the spatial domain, Th and TH , are used with mesh parameters h and
H respectively, with H > h. Throughout the remainder of this section the spaces and operators defined in §2 will
carry a subscript h or H to indicate the underlying triangulation they are defined with respect to.

5.1. Two-grid Bounds. Here we obtain some bounds between functions defined on the coarse grid and related
functions defined on the fine grid. The bounds are analogous to those given in Lemma 3.1 in [1].

We first note that given an arbitrary function qh ∈ Qh⊗T and defining ~vh = gradc
h qh ∈ Rh⊗T , we can uniquely

define qH and ~vH such that ~vH = gradc
H qH and ∇ · ~vH = ΘH∇ · ~vh. Moreover, given f = −∇ · gradc

h qh, (qh, ~vh)
and (qH , ~vH) will be finite element approximations to the diffusion problem given by (2), as can be demonstrated
using the finite element formulation of the diffusion problem given in §2.6.

Lemma 1. Given qh ∈ Qh ⊗ T there exists ~σ ∈ Rh ⊗ T such that

∇ · ~σ = qh −ΘHqh, ||~σ||H1(D)2⊗L2(Ω) ≤ C1||qh −ΘHqh||L2(D)⊗L2(Ω),

where C1 is independent of h, m, and n.

Proof. Consider the semi-discrete variational problem: find p ∈ H1
0 (D)⊗ T such that∫

Ω

∫
D

∇p · ∇v =
∫

Ω

∫
D

(qh −ΘHqh)v ∀v ∈ H1
0 (D)⊗ T.

This can be seen as the weak formulation of the second-order diffusion problem with source function f = qh−ΘHqh.
From regularity considerations (cf. [2]) we have

||p||H2(D) ≤ CD||qh −ΘHqh||L2(D) ∀ω ∈ Ω
where CD is only dependent on the boundary of the spatial domain. From this it follows that

||p||H2(D)⊗L2(Ω) ≤ CD||qh −ΘHqh||L2(D)⊗L2(Ω).
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Since p solves the diffusion problem we have

−∇2p = qh −ΘHqh a.e.

Now set ~σ = −∇p ∈ Rh ⊗ T . Then

||~σ||H1(D)2⊗L2(Ω) = ||∇p||H1(D)2⊗L2(Ω) ≤ ||p||H2(D)⊗L2(Ω) ≤ CD||qh −ΘHqh||L2(D)⊗L2(Ω)

which, equating CD with C1, establishes the lemma. �

Theorem 7. For qh ∈ Qh ⊗ T ,

||qh −ΘHqh||L2(D)⊗L2(Ω) ≤ C2H||gradc
h qh||U

where C2 is independent of h, m, and n.

Proof. Define ∇ · ~σ = qh −ΘHqh as in Lemma 1. Then

||qh −ΘHqh||2L2(D)⊗L2(Ω) = (∇ · ~σ, qh −ΘHqh)L2(D)⊗L2(Ω) = (∇ · ~σ, (Θh −ΘH)qh)L2(D)⊗L2(Ω)

= ((Θh −ΘH)∇ · ~σ, qh)L2(D)⊗L2(Ω) = (∇ · (Πh −ΠH)~σ, qh)L2(D)⊗L2(Ω),

where in the last line we used the commutativity result given in (18). Applying the definition of the discrete
gradient operator and the Cauchy-Schwarz inequality gives

||qh −ΘHqh||2L2(D)⊗L2(Ω) = ((ΠH −Πh)~σ, gradc
h qh)U ≤ ||(ΠH −Πh)~σ||U ||gradc

h qh||U
≤ (||~σ −ΠH~σ||U + ||~σ −Πh~σ||U )||gradc

h qh||U .

Now applying the equivalence between || · ||U and || · ||L2(D)2⊗L2(Ω), the approximation bound given by (13), and
noting that h < H gives

||qh −ΘHqh||2L2(D)⊗L2(Ω) ≤ a
1/2
max(||~σ −ΠH~σ||L2(D)2⊗L2(Ω)+

||~σ −Πh~σ||L2(D)2⊗L2(Ω))||gradc
h qh||U

≤ a1/2
max(H + h)||~σ||H1(D)2⊗L2(Ω)||gradc

h qh||U
≤ a1/2

maxC02HC1||qh −ΘHqh||L2(D)⊗L2(Ω)||gradc
h qh||U

which establishes the theorem with C2 = 2C0C1a
1/2
max. �

Theorem 8. Let qh ∈ Qh ⊗ T and ~vh = gradc
h qh ∈ Rh ⊗ T . Define qH and ~vH such that vH = gradc

H qH and
∇ · ~vH = ΘH∇ · ~vh. Then

||~vh − ~vH ||U ≤ C3H||∇ · ~vh||L2(D)⊗L2(Ω)

where C3 is independent of h, m, and n.

Proof. As noted above, ~vh and ~vH can be considered to be finite element approximations to the flux solution of
a first-order diffusion problem with source function f = −∇ · gradc

h qh. Let ~v∗ ∈ H(div;D)⊗T be the solution to
the related semi-discrete problem, as described in §2.9. Then, using Theorem 1 and noting H > h,

||~vh − ~vH ||U ≤ ||~v∗ − ~vh||U + ||~v∗ − ~vH ||U ≤ 2C∗H||∇ · gradc
h qh||L2(D)⊗L2(Ω)

= 2C∗H||∇ · ~vh||L2(D)⊗L2(Ω),

which establishes the theorem with C3 = 2C∗. �

Theorem 9. Let qh ∈ Qh ⊗ T and ~vh = gradc
h qh ∈ Rh ⊗ T . Define qH and ~vH such that ~vH = gradc

H qH and
∇ · ~vH = ΘH∇ · ~vh. Then

||~vh − ~vH ||Λ ≤ C4H||Hh~vh||U

where C4 is independent of h, m, and n.
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Proof. First, note that ∇ · ~vh ∈ Qh ⊗ T . Applying Theorem 7 gives

||∇ · ~vh −∇ · ~vH ||L2(D)⊗L2(Ω) = ||∇ · ~vh −ΘH∇ · ~vh||L2(D)⊗L2(Ω) ≤ C2H||gradc
h∇ · ~vh||U .

Then, using this along with Theorem 8 gives

||~vh − ~vH ||2Λ = ||~vh − ~vH ||2U + ||∇ · ~vh −∇ · ~vH ||2L2(D)⊗L2(Ω)

≤ C2
3H

2||∇ · ~vh||2L2(D)⊗L2(Ω) + C2
2H

2||gradc
h∇ · ~vh||2U

It can be shown, using the definition of the weighted H(div;D)⊗ L2(Ω) operator given in §3.3, that

||Hh~vh||2U = ||~vh||2Λ + ||∇ · ~vh||2L2(D)⊗L2(Ω) + ||gradc
h∇ · ~vh||2U .

Therefore,

||~vh − ~vH ||Λ ≤ max{C2, C3}H||Hh~vh||U
which establishes the theorem with C4 = max{C2, C3}. �

5.2. Λ-Projection Bounds. In this section we obtain two bounds involving a function in Rh ⊗ T and its
projection with respect to Λ(·, ·) onto RH ⊗T . These two bounds comprise the stochastic analogue of Lemma 3.2
in [1].

Theorem 10. Let ~v ∈ Rh⊗T and define ~w = ~v−PH~v ∈ Rh⊗T with Helmholtz Decomposition ~w = gradc
h q+∇×z.

Then

||gradc
h q||U ≤ C4H||~w||Λ.

where C4 is as in Theorem 9.

Proof. First note that

Λ(gradc
h q,H−1

h gradc
h q) = (gradc

h q, gradc
h q)U = ||gradc

h q||2U .

Let ~τh = H−1
h gradc

h q. Now, using (15), we have

Λ(∇× z, ~τh) =
∫

Ω

∫
D

1
c
∇× z · ~τh +

∫
Ω

∫
D

(∇ · ∇ × z)(∇ · ~τh)

=
∫

Ω

∫
D

1
c
∇× z · ~τh = (∇× z, ~τh)U .

As Hh (and hence H−1
h ) maps gradc

h (Qh ⊗ T ) onto itself (as noted in §3.3) there exists q′ ∈ Qh ⊗ T such that
~τh = gradc

h q
′. So, using (16),

Λ(∇× z, ~τh) = (∇× z, gradc
h q

′)U = −(∇ · ∇ × z, q′)L2(D)⊗L2(Ω) = 0,

on account of (15) again. Define ~τH in relation to ~τh as in Theorem 9. Then

Λ(gradc
h q, ~τh) = Λ(~v − PH~v, ~τh) = Λ(~v − PH~v, ~τh − ~τH)

≤ ||~v − PH~v||Λ||~τh − ~τH ||Λ ≤ C4H||~w||Λ||gradc
h q||U ,

which completes the proof. �

Theorem 11. Let ~v ∈ Rh⊗T and define ~w = ~v−PH~v ∈ Rh⊗T with Helmholtz Decomposition ~w = gradc
h q+∇×z.

Then

||z||L2(D)⊗L2(Ω) ≤ C5H||~w||Λ
where C5 is independent of h, m, and n.

Proof. A standard result from the deterministic analysis (cf. [1]) yields

||z||L2(D) ≤ C6H||∇ × z||L2(D)2 ∀ω ∈ Ω
for some constant C6. Therefore,

||z||L2(D)⊗L2(Ω) ≤ C6H||∇ × z||L2(D)2⊗L2(Ω) ≤ C6a
−1/2
min H||∇ × z||U .
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Now, using the properties of the Helmholtz decomposition noted in §3.1,

||∇ × z||2U = (~w − gradc
h q,∇× z)U = (~w,∇× z)U

= (~w,∇× z)U + (∇ · ~w,∇ · ∇ × z)L2(D)⊗L2(D)

= Λ(~w,∇× z) ≤ ||~w||Λ||∇ × z||U .

Therefore ||∇ × z||U ≤ ||~w||Λ which combined with the above result establishes the theorem with C5 = C6a
−1/2
min .

�

6. Additive Schwarz Method

A constitutive part of multigrid is the smoother, where by smoother we mean an iterative method that suc-
cessively smoothes the error associated with the iterates of the system that multigrid is applied to. Following [1]
we will use the additive Schwarz method (extended to incorporate the stochastic nature of the problem) as our
smoother. This method is defined with respect to a decomposition of the spatial domain D. In this section we
will define the additive Schwarz operator and establish some results that will ultimately be used to demonstrate
the convergence of the multigrid algorithm defined in §7.1.

6.1. Domain Decomposition Results. Let D = {D1, . . . , DL} be an over lapping covering of D. Let γ be an
integer such that no point in D occurs in more than γ elements of D. Then

∑
k

∫
Dk
≤ γ

∫
D

and γ is called the
overlap parameter. Though we need not be specific here we note that in practice we will take each element of D
to be a set of triangles in T that share a common node. For the partitions that we use to generate the numerical
results in §8 this gives γ = 3. Now define

Rk ⊗ T = {~v ∈ R⊗ T | supp(v) ⊂ Dk ×Ω }.

Given ~v ∈ R⊗T there exists a decomposition ~v =
∑

k ~vk where ~vk ∈ Rk⊗T . Let { θk : D → R }Lk=1 be a partition
of unity subordinate to the covering D, i.e.

∑
k θ

k = 1 and supp(θk) ⊂ Dk.

Theorem 12. Let ~v ∈ R⊗ T and ~vk = Πθk~v ∈ Rk ⊗ T . Then ~v =
∑

k ~vk and
L∑

k=1

Λ(~vk, ~vk) ≤ C7((1 + h−2)||~v||2U + ||∇ · ~v||2L2(D)⊗L2(Ω))

where C7 is a constant.

Proof. Following [1], there exists a constant C8 such that

||~vk||L2(D)2 ≤ C8||~v||L2(Dk)2 ∀ω ∈ Ω.

Introducing the notation || · ||Uk
to denote a norm defined in the same manner as || · ||U but restricted to Dk, we

have

||~vk||2U ≤ amax||~vk||2L2(D)2⊗L2(Ω) ≤ C
2
8amax||~v||2L2(Dk)2⊗L2(Ω) ≤

C2
8amax

amin
||~v||2Uk

.

Also following [1], there exists a constant C9 such that

||∇ · ~vk||L2(D) ≤ C9(h−1||~v||L2(Dk)2 + ||∇ · ~v||L2(Dk)) ∀ω ∈ Ω.

Therefore,

||∇ · ~vk||2L2(D)⊗L2(Ω) ≤ 2C2
9 (h−2a−1

min||~v||
2
Uk

+ ||∇ · ~v||2L2(D)⊗L2(Ω)).

Then, using these two results, we have
L∑

k=1

Λ(~vk, ~vk) =
L∑

k=1

(||~vk||2U + ||∇ · ~vk||2L2(D)⊗L2(Ω))

≤
L∑

k=1

(
C2

8amax

amin
||~vk||2Uk

+ 2C2
9

(
1

h2amin
||~v||2Uk

+ ||∇ · ~v||2L2(Dk)⊗L2(Ω)

))
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which establishes the theorem with

C7 = γmax
{
C2

8amax

amin
, 2C9 max

{
1

amin
, 1

}}
,

where γ is the overlap parameter noted above. �

6.2. Additive Schwarz Operator. We define the projection operator Pk : R ⊗ T → Rk ⊗ T such that for
~v ∈ R⊗ T ,

Λ(Pk~v, ~w) = Λ(~v, ~w) ∀~w ∈ Rk ⊗ T.

Note the similarity between Pk and the projection operator P defined in §3.2. The additive Schwarz operator is
now defined by

S = η

L∑
k=1

PkH−1

where η is some constant chosen such that Theorem 13 below holds. The additive Schwarz operator thus defined
is symmetric with respect to (·, ·)U . To see this let ~v, ~w ∈ R⊗ T , then

(S~v, ~w)U = η

L∑
k=1

(PkH−1~v, ~w)U = η

L∑
k=1

Λ(PkH−1~v,H−1 ~w)

= η

L∑
k=1

Λ(H−1~v,PkH−1 ~w) = Λ(H−1~v,S ~w) = (~v,S ~w)U .

The operator S can also be shown to be positive definite with respect to (·, ·)U providing that, given ~v ∈ R ⊗ T
there exists a decomposition ~v =

∑L
k=1 ~vk, ~vk ∈ Rk ⊗ T such that

L∑
k=1

Λ(~vk, ~vk) ≤ C�Λ(~v,~v)(26)

where C� is a positive constant. To see this, we employ a standard argument as given, e.g., in [20]. Let
PS =

∑L
k=1 Pk. Then

Λ(~v,~v) =
L∑

k=1

Λ(~v,~vk) =
L∑

k=1

Λ(Pk~v,~vk) ≤
L∑

k=1

||Pk~v||Λ||~vk||Λ

≤
( L∑

k=1

Λ(Pk~v,Pk~v)
)1/2( L∑

k=1

Λ(~vk, ~vk)
)1/2

≤
(

Λ(PS~v,~v)
)1/2(

C�Λ(~v,~v)
)1/2

.

Therefore,

Λ(PS~v,~v) ≥
1
C�

Λ(~v,~v).

Returning to the additive Schwarz operator and letting ~w = H−1~v gives

(S~v,~v)U = η

L∑
k=1

(PkH−1~v,~v)U = η

L∑
k=1

Λ(PkH−1~v,H−1~v)

= η

L∑
k=1

Λ(Pk ~w, ~w) = ηΛ(PS ~w, ~w) ≥ 1
C�

ηΛ(~w, ~w).

As ~v = 0⇔ ~w = 0 this shows that S is positive definite and hence invertible. That (26) holds for all v ∈ R⊗T can
be shown by following a similar line of reasoning as in [1]. However, here we show that (26) holds on a necessary
subspace of R⊗ T . This is done in the following section.
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7. Multigrid

In the following we consider a family of triangulations Tj , j = 1, . . . , J , with mesh parameters hj , where hi > hj

for i < j. We assume these triangulations give rise to a nested sequence of finite-dimensional spaces denoted
R1 ⊗ T ⊂ · · · ⊂ RJ ⊗ T ⊂ U , as defined in §2.6. For the remainder of this section the various operators and
spaces defined in §§2,3 will carry a subscript to denote the underlying triangulation on which they are defined.
We let Dj be a covering of D defined with respect to Tj , as discussed in §6.1, and we let Sj , j = 2, . . . , J , be the
additive Schwarz operator defined with respect to Dj .

7.1. Multigrid V-Cycle. We now define a multigrid algorithm, analogous to that given in [1], for solving the
vector equation HJ~v = ~z. Let ~z ∈ Rk ⊗ T . Then we define V−1

k : Rk ⊗ T → Rk ⊗ T such that V−1
1 ~z = H−1

1 ~z and
V−1

k ~z, k = 2, . . . , J , by the recursive algorithm:

~v = 0
for j = 1, . . . , k

~v ← ~v + Sj(~z −Hj~v)
end
~v ← ~v + V−1

j−1Θj−1(~z −Hj~v)
for j = 1, . . . , k

~v ← ~v + Sj(~z −Hj~v)
end

This corresponds to a multigrid V-cycle with one multigrid iteration at each level. Moreover, at each level there
are k pre-smoothing and post-smoothing steps.

The matrix representation of the operator HJ is A−1
J (AJ + FJ) where AJ and FJ are as in §4.2. Therefore,

the vector equation HJ~v = ~z can be expressed as the linear system (AJ + FJ)v = AJz, where v and z are the
coefficient vectors of ~v and ~z. This relationship along with the convergence properties of the above algorithm will
be used in §7.2 to demonstrate that the spectral bounds in (24) will be independent of the parameters h, m, and
n if the matrix VJ is chosen such that V −1

J is the matrix representation of the multigrid operator V−1
J .

7.2. Multigrid Convergence. We here establish that the multigrid algorithm given in §7.1 converges and that
VJ and HJ are spectrally equivalent.

Theorem 13. The inequality

Λ((I − SjHj)~v,~v) ≥ 0 ∀~v ∈ Rj ⊗ T

holds for j = 1, . . . , J .

Proof. For j = 1, Sj = H−1
j and the result holds as Λ(·, ·) is an inner product on R1 ⊗ T . Let 2 < j ≤ J . Then

Λ((I − SjHj)~v,~v) = Λ(~v,~v)− Λ(SjHj~v,~v) = Λ(~v,~v)− η
Lj∑

k=1

Λ(Pk
j ~v,~v)

= Λ(~v,~v)− η
Lj∑

k=1

Λ(Pk
j ~v,Pk

j ~v) = Λ(~v,~v)− η
Lj∑

k=1

||Pk
j ~v||2Λ.

Let || · ||Λk
be the norm induced on Dk ×Ω by || · ||Λ. Then

||Pk
j ~v||2Λ = Λ(Pk

j ~v,Pk
j ~v) = Λ(Pk

j ~v,~v) ≤ ||Pk
j ~v||Λk

||~v||Λk
= ||Pk

j ~v||Λ||~v||Λk
.

Therefore,

Λ((I − SjHj~v,~v) ≤ (1− ηγ)Λ(~v,~v)

where γ is the overlap parameter discussed in §6.1. So the theorem holds providing η ≤ γ−1. �
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Lemma 2. Let ~v ∈ Rj⊗T and let ~w ∈ (I−Pj−1)~v ∈ Rj⊗T . Then, for j = 2, . . . , J , there exists a decomposition
~w =

∑Lj

k=1 ~wk, ~wk ∈ Rk
j ⊗ T such that

Lj∑
k=1

Λ(~wk, ~wk) ≤ C10Λ(~w, ~w)(27)

where C10 is independent of h, m, and n.

Proof. Let ~w have the Helmholtz decomposition ~w = gradc
hj
q+∇× s, where q ∈ Qj ⊗T and s ∈Wj ⊗T . Define

~w′ = gradc
hj
q and ~w′′ = ∇ × s. Then given the decompositions ~w′ =

∑
k ~w

′
k and ~w′′ =

∑
k ~w

′′
k and taking into

account that the Helmholtz decomposition is orthogonal with respect to Λ(·, ·), it is sufficient to show that
Lj∑

k=1

Λ(~w′k, ~w
′
k) ≤ C ′10Λ(~w, ~w),

Lj∑
k=1

Λ(~w′′k , ~w
′′
k) ≤ C ′′10Λ(~w, ~w)

for some constants C ′10 and C ′′10. This will result in C10 = 2max{C ′10, C ′′10}. To show the first of these, let
w′k = Πjθ

k
jw

′ where θk
j is as in §6.2. Invoking Theorems 10 and 12 gives

Lj∑
k=1

Λ(~w′k, ~w
′
k) ≤ C7((1 + h−2

j )||~w′||2U + ||∇ · ~w′||2L2(D)⊗L2(Ω))

= C7(||~w′||2Λ + h−2
j ||~w

′||2U ) ≤ C7(||~w′||2Λ + C2
4h

−2
j h2

j−1||~w||2Λ).

Assume that for j = 2, . . . , J , there exists % > hj−1/hj , then, as ||~w′||Λ ≤ ||~w||Λ,
Lj∑

k=1

Λ(~w′k, ~w
′
k) ≤ 2C7 max{1, C2

4%
2}Λ(~w, ~w).

Next, following [1], there exists a decomposition ~w′′ =
∑

~w′′k such that
Lj∑

k=1

(~w′′k , ~w
′′
k)L2(D)2 ≤ C11(||~w′′||2L2(D)2 + h−2

j ||s||
2
L2(D)) ∀ω ∈ Ω,

where C11 is a constant. From this it follows that
Lj∑

k=1

Λ(~w′′k , ~w
′′
k) ≤ amaxC11(a−1

min||w
′′||2Λ + h−2

j ||s||
2
L2(D)⊗L2(Ω)).

Applying Theorem 11 and noting that ||~w′′||Λ ≤ ||~w||Λ gives
Lj∑

k=1

Λ(~w′′k , ~w
′′
k) ≤ 2 amax C11 max{a−1

min, C
2
5%

2}Λ(~w, ~w).

Therefore the theorem is established. �

Lemma 3. Let ~v ∈ Rj ⊗ T and ~w = (I − Pj−1)~v. Then for j = 2, . . . , J ,

(S−1
j ~w, ~w)U =

1
η

inf
Lj∑

k=1

Λ(~wk, ~wk)

where the infinum is taken over all decompositions of the form ~w =
∑

k ~wk, ~wk ∈ Rk
j ⊗ T .

Proof. Let Ej = { ~w ∈ Rj ⊗ T | ~w = (I − Pj−1)~v, ~v ∈ Rj ⊗ T } for j = 2, . . . , J . As a consequence of Lemma 2,
(24) is satisfied on each of these sets and, therefore, Sj is invertible on Ej . The rest of the proof follows in an
analogous fashion to the proof for the deterministic case given in Appendix B of [1]. �

Theorem 14. The inequality

(S−1
j (I − Pj−1)~v, (I − Pj−1)~v)U ≤ C12Λ((I − Pj−1)~v, (I − Pj−1)~v) ∀~v ∈ Rj ⊗ T

holds for j = 2, . . . , J , where C12 is independent of h, m, and n.
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Proof. Let ~w = (I − Pj−1)~v. Then for each ~v ∈ Rj ⊗ T it is required to show that

(S−1 ~w, ~w)U ≤ C12Λ(~w, ~w).

From Lemma 2 we know there exists a decomposition ~w =
∑

k ~wk, ~wk ∈ Rk
j ⊗ T such that

Lj∑
k=1

Λ(~wk, ~wk) ≤ C10Λ(~w, ~w).

Now using Lemma 3 gives the required inequality with C12 = η−1C10. �

Theorem 15. The eigenvalues of V−1
J HJ are contained in the interval [1− δ, 1] where

δ =
C12

C12 + 2k
.

Proof. Given Theorem 13 and Theorem 15, the proof follows that for Corollary 5.2 in [1]. �

Note that δ, thus defined, depends on k, which denotes the number of pre-smoothing and post-smoothing steps
in the multigrid algorithm, and C12 = η−1C10, where C10 is independent of the discretization parameters, h, m,
and n, but does depend on the lower and upper bounds of the diffusion coefficient, amin and amax.

From Theorem 15 we have

1− δ ≤ (HJ~v,~v)U

(VJ~v,~v)U
≤ 1 ∀~v ∈ VJ .

As noted in §7.1 the multigrid algorithm finds an approximation, ~v1 say, to the solution of HJ~v = ~z. Moreover,
HJ~v = ~z can be expressed as (AJ + FJ)v = AJz where AJ and FJ are as in §4.2 and v and z are the coefficient
vectors of ~v and ~z. Now we define the matrix VJ such that V −1

J AJz = v1 where v1 is the coefficient vector of ~v1.
That is to say, V −1

J is the matrix representation of the multigrid operator V−1
J . With VJ defined in this way we

have
(HJ~v,~v)U

(VJ~v,~v)U
=

Λ(~v,~v)
(VJ~v,~v)U

=
((AJ + FJ)v,v)
(A−1

J VJv,v)AJ

=
((AJ + FJ)v,v)

(VJv,v)
.

Therefore, (24) is satisfied with θ = 1−δ and θ = 1. Consequently, as θ governs the values of the eigenvalue bounds
described in Theorem 6, we expect the preconditioned minres scheme given in §4.2 to converge independently of
the discretization parameters but not of the upper and lower bounds of the diffusion coefficient.

8. Numerical Implementation

Our aim is to solve (12) via minres using the preconditioner (25). Recall that N is a diagonal matrix and the
action of V −1 is achieved by applying a V-cycle of the multigrid algorithm analysed in §7 to a system with the
coefficient matrix

A+ F = G0 ⊗ (K0 +D0) +
m∑

r=1

√
λr Gr ⊗Kr.

The cost of computing the action of V −1 is clearly a crucial consideration and we now offer some practical insight
into this.

The intergrid transfer operators are defined in the usual way. That is, prolongation is achieved via natural
inclusion and restriction is defined via transposition. To describe the additive Schwarz smoother, let Hj =
Aj + Fj denote the stochastic weighted H(div) matrix associated with the triangulation Tj . This triangulation
is decomposed into Lj overlapping patches which constitute the elements of Dj as described in §6.1. Then the
matrix representation of Sj is given by

Sj = η

Lj∑
k=1

P k
j H

−1
j , P k

j = (I ⊗ Jk
j )T (Hk

j )−1(I ⊗ Jk
j )Hj ,

where (I ⊗ Jk
j ) is the patch restriction matrix, I is the M × M identity matrix, and Jk

j ∈ RNRj
×NRj is the

standard matrix with entries zero or one that extracts the components of w ∈ RNRj which are associated with
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the k-th patch in Dj . Following the advice in [1], we choose the scaling parameter in the definition of Sj to be
η = 1/2.

Now, computing Sjv, where v ∈ RMNRj , requires local solves with the matrices

Hk
j = G0 ⊗ (Kk

0,j +Dk
0,j) +

m∑
r=1

√
λr Gr ⊗Kk

r,j , k = 1, . . . , Lj ,(28)

where Kk
0,j , D

k
0,j , and Kk

r,j are small principal submatrices of K0,j , D0,j , and Kr,j , respectively. The major
strength of this method is that the Lj solves are decoupled and can (and should) be performed in parallel. The
size of Hk

j is approximately 6M × 6M where M is defined in (8) and six is the typical number of flux degrees of
freedom lying on a patch in Dj . We assume that these Lj systems are solved via direct methods and so a few
thousand stochastic degrees of freedom can be handled comfortably in a parallel computing environment.

If parallel computing facilities are not available or M is in the order of hundreds of thousands or more, then
a cheaper smoother may have to be considered. We outline one possibility. Suppose that we define a modified
smoother Ŝj via

Ŝj = η

Lj∑
k=1

P k
j Ĥ

−1
j , P k

j = (I ⊗ Jk
j )T (Ĥk

j )−1(I ⊗ Jk
j )Ĥj

where, now,

Ĥk
j = G0 ⊗ (Kk

0,j +Dk
0,j), k = 1, . . . , Lj .

Then, Ĥk
j is a local version of the positive definite matrix

Ĥj = G0 ⊗ (K0,j +D0,j)

which is a stochastic H(div) matrix with a deterministic weight, that provides a representation of the norm,

||c−
1
2

0 ~v||2L2(D)2⊗L2(Ω) + ||∇ · ~v||2L2(D)⊗L2(Ω)

on Rj ⊗ T. Crucially, since G0 is diagonal, then

(Ĥk
j )−1 = G−1

0 ⊗
(
Kk

0,j +Dk
0,j

)−1

is block-diagonal and computing Ŝjv now requires LjM decoupled solves with matrices of dimension approxi-
mately six. Each of these solves is a trivial cost and, moreover, there are two levels of parallelism to exploit.

The analysis in §7 is valid only for the multigrid method that uses the smoother (28). Consequently, we have
no theoretical bounds for the constants θ and θ̄ in (24) when V corresponds to the modified method. However, a
preliminary analysis suggests that if c0(~x) dominates in the expression (2.1), the resulting multigrid approximation
is efficient.

8.1. Model problem. We now solve (2) with f = 1 using uniformly refined meshes of triangular finite elements
on D = (−1, 1)× (−1, 1). The spatial grid consists of d× d squares each of which is further subdivided into two
equal triangles. The random diffusion coefficient c(~x, ~ξ(ω))−1 is chosen to be of the form (2.1) with the covariance
function

(29) C(~x, ~y) = σ2 exp (−|x1 − y1| − |x2 − y2|) .
Note that the eigenvalues and eigenfunctions of this function are known explicitly (see [11]). The random variables
{ξr}mr=1 in (2.1) are assumed to be independent and identically distributed with zero mean and unit variance.
If uniform random variables are selected then Ω = [−

√
3,
√

3]m and multivariate Legendre polynomials of total
degree n are used to construct the polynomials chaos basis for T. Alternatively, if Gaussian random variables are
selected then Ω = Rm and multivariate Hermite polynomials are employed.

We investigate the performance of the preconditioner (25) with respect to the discretisation parameters h, m
and n, the distribution of the underlying random variables, ξr, and the mean c0(~x) and variance σ2 of c(~x, ~ξ(ω))−1.
In each experiment, we report preconditioned minres iteration counts and assess the efficiency of the multigrid
approximation by computing the constants θ and θ̄ from (24). In each minres iteration, a single V-cycle of
multigrid is applied with a single pre- and post-smoothing step per grid level. The iteration is terminated when
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the relative residual reaches a tolerance of 10−6. All experiments were performed on a modest single-processor
Linux machine with 2GB RAM.

8.2. Robustness with respect to discretisation parameters. First we fix the mean and standard deviation
of c(~x, ~ξ(ω))−1 to be c0 = 1 and σ = 0.1. Iteration counts for solving this problem, using two types of random
variables, are listed in Tables 1 and 2. The numbers in parentheses in Table 1 indicate iterations obtained with
the exact preconditioner (23).

Uniform Gaussian
n m = 1 m = 2 m = 3 m = 4 m = 1 m = 2 m = 3 m = 4

d = 16 1 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (5)
- 2 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (5)
- 3 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (6)
- 4 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (5)
d = 32 1 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (5)
- 2 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (5)
- 3 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (6) 17 (5)
- 4 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (6) 17 (5)

Table 1. Preconditioned minres iterations using multigrid with original smoother

Uniform Gaussian
n m = 1 m = 2 m = 3 m = 4 m = 1 m = 2 m = 3 m = 4

d = 16 1 17 17 17 18 17 17 17 17
- 2 17 18 19 19 17 19 19 19
- 3 17 19 19 19 18 19 19 19
- 4 17 19 19 19 18 19 19 19
d = 32 1 17 17 17 18 17 17 17 18
- 2 17 18 18 18 18 18 18 19
- 3 17 18 18 18 18 18 18 19
- 4 17 18 18 18 18 18 19 19

Table 2. Preconditioned minres iterations using multigrid with modified smoother

The results for the preconditioner based on the original smoother confirm the analysis of §7 and §4.2. Iteration
counts are independent of all the discretisation parameters, and in addition, the distribution of the underlying
random variables. In this example, modifying the multigrid smoother also has little to no effect on the performance
of the preconditioning scheme. To reinforce this, in Table 3, we list the numerically computed constants from
(24) for both variants of the multigrid method.

8.3. Robustness with respect to amax. The experiment above is not challenging from a statistical point of
view. We know from Theorems 5 and 6 that iteration counts are likely to be sensitive to the value amax in (5),
even if the multigrid approximation is not. Here, we vary the mean c0 and fix σ = c0/10 so that c0 is the dominant
term in (2.1) and amax = O(c0). We fix the discretisation parameters and choose uniform random variables.

The results in Table 4 tell us that both multigrid approximations improve as c0 → ∞ and neither one dete-
riorates as c0 → 0. The deterioration in the minres iteration counts as c0 → ∞ is not caused by a defficiency
in the multigrid approximation but rather is a feature of the underlying exact preconditioner (23), as indicated
by the eigenvalue bound established in Theorem 5. This is a known feature of the corresponding deterministic
preconditioner. Ideally, (2) should be rescaled so that for the re-scaled diffusion coefficient, amax ≤ 1.

20



n m = 1 m = 2 m = 3
Original (Uniform) 1 [0.4589,1.0000] [0.4589,1.0000] [0.4589,1.0000]
- 2 [0.4586,1.0000] [0.4587,1.0000] [0.4587,1.0000]

Original (Gaussian) 1 [0.4589,1.0000] [0.4589,1.0000] [0.4578,1.0000]
- 2 [0.4583,1.0000] [0.4584,1.0000] [0.4584,1.0000]

Modified (Uniform) 1 [0.4235,1.0003] [0.4217,1.0009] [0.4205,1.0013]
- 2 [0.4149,1.0000] [0.4103,1.0008] [0.4079,1.0012]

Modified (Gaussian) 1 [0.4235,1.0003] [0.4217,1.0009] [0.4205, 1.0013]
- 2 [0.4049,1.0004] [0.4024,1.0008] [0.3862, 1.0009]

Table 3. Multigrid constants, d = 8, [θ, θ̄], Uniform random variables

Exact Original Modified
c0 σ iter iter [θ, θ̄] iter [θ, θ̄]

10−3 10−4 3 15 [0.4552,1.0000] 16 [0.4068,1.0008]
10−2 10−3 3 16 [0.4550,1.0000] 16 [0.4068,1.0008]
10−1 10−2 4 16 [0.4556,1.0000] 17 [0.4071,1.0008]
100 10−1 5 17 [0.3956,1.0000] 18 [0.4103,1.0008]
101 100 8 21 [0.4864,1.0000] 22 [0.4387,1.0005]
102 101 16 40 [0.6453,1.0000] 45 [0.5990,1.0000]
103 102 46 99 [0.9172,1.0000] 107 [0.8660,1.0013]

Table 4. minres iterations and multigrid constants m = 4, n = 2, d = 32

8.4. Robustness with respect to the ratio c−1
0 σ. It is known that preconditioners for stochastic finite element

systems that are based on the mean-component of the diffusion coefficient are cheap but lose efficiency when
c−1
0 σ →∞. Theorems 6 and 15 tell us that if V is based on our original multigrid method, then the efficiency of

(25) is affected by amax, and possibly amin, but not directly by the ratio c−1
0 σ →∞ (if amax remains bounded).

To illustrate this, we fix c0 = 1 and vary only σ. We fix all the discretisation parameters and choose uniform
random variables.

σ/c0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Exact 5 5 5 5 5 5 5
Original 17 17 17 17 17 19 19
Modified 18 20 21 24 28 * *

Table 5. minres iteration counts, m = 4, n = 2 c0 = 1, d = 32

The iteration counts listed in Table 5 confirm that the preconditioning scheme based on the original multigrid
algorithm is insensitive to c−1

0 σ. Iteration counts deteriorate, however, for the modified version and minres
stagnates when c−1

0 σ exceeds a certain threshold (indicated by ∗). This is to be expected since the matrix
m∑

r=1

√
λr Gr ⊗Kr

which encapsulates the deviation of the diffusion coefficient from its mean value is not taken into account in the
smoothing. This causes the quality of the multigrid approximation to deteriorate. To reinforce this, we list the
associated multigrid constants in Table 6 for d = 8. These results reinforce our earlier comment that the modified
method should only be considered if the deviation of c(~x, ~ξ(ω))−1 from the mean field is small.
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σ/c0 0.4 0.5 0.6
m = 2 n = 1 [0.2657, 1.0000] [0.2268, 1.0000] [0.1915, 1.0000]

n = 2 [0.2155, 1.0000] [0.1651, 1.0000] [0.1187, 1.0000]
m = 3 n = 1 [0.2574, 1.0000] [0.2179,1.0000] [0.1822, 1.0000]

n = 2 [0.2072, 1.0000] [0.1529, 1.0000] [0.1035, 1.0000]
m = 4 n = 1 [0.2194, 1.0000] [0.2090,1.0000] [0.1727, 1.0000]

n = 2 [0.1949, 1.0000] [0.1078,1.0000] [-0.5426, 1.0000]
Table 6. Multigrid constants [θ, θ̄] for modified smoother, c0 = 1, d = 8

9. Acknowledgements

We would like to thank John Osborn, Richard Falk, Douglas Arnold, and Ragnar Winther for several useful
discussions and in particular for their assistance in establishing Lemma 1.

References

[1] Douglas N. Arnold, Richard S. Falk, and R. Winther. Preconditioning in H(div) and applications. Math. Comp., 66:957–984,
1997.
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