Improving Efficiency, Expressiveness and Security of Searchable Encryption

Thumbnail Image


Publication or External Link





A large part of our personal data, ranging from medical and financial records to our social activity, is stored online in cloud servers. Frequent data breaches threaten to expose these data to malicious third parties, often with catastrophic consequences (estimated to several billion of US dollars annually). In this thesis, we use, extend and improve Searchable Encryption (SE) in order to build the next generation encrypted databases/systems that will prevent such undesirable situations. Our goal is to build systems that are both practical and provably secure, while allowing expressive search and computation on encrypted data. Towards this goal, we have proposed new SE schemes that achieve the following: (i) have better search/computation time, (ii) allow expressive queries such as range, join, group-by, as well as dynamic query workloads, and (iii) provide new adjustable security-efficiency trade-offs---leading to robust and efficient schemes even against very powerful adversaries.