EFFECTS OF FULL-SCALE THERMAL HYDROLYSIS-ANAEROBIC DIGESTION ON THE TEMPORAL TRENDS OF POLYBROMINATED DIPHENYL ETHERS IN BIOSOLIDS AND THEIR PHYSICAL AND BIOLOGICAL DEGRADATION DURING WASTEWATER TREATMENT
Files
Publication or External Link
Date
Authors
Advisor
Citation
DRUM DOI
Abstract
Biosolids produced at wastewater treatment plants (WWTPs) are rich in recovered nutrients and are often recycled through soil amendment on agricultural land. Advanced solids treatment strategies, including thermal hydrolysis pretreatment (THP) and anaerobic digestion (AnD), are utilized to produce cleaner, safer biosolids based on EPA classifications. Despite the phase-out of the flame retardant polybrominated diphenyl ethers (PBDEs) from commercial use in the U.S., they are still present in biosolids and can be degraded to toxic byproducts during solids treatment. Their transformation during solids treatment is not well understood. This work shows that while phase-outs of PBDEs did not affect their concentrations in biosolids from the target WWTP, the implementation of THP-AnD treatment in 2014 led to increased PBDE degradation during solids treatment. This significantly lowered PBDE concentrations and shifted congener distribution to favor smaller, more toxic congeners in final biosolids compared to lime-stabilized biosolids historically produced at the target WWTP. Comparisons between the target WWTP and other AnD facilities without THP revealed that more efficient PBDE degradation occurred during THP-AnD treatment despite lower abundances of debrominating bacteria in digesters. Future work will examine if PBDE degradation during THP-AnD treatment is due to physical or biological processes.