On Orthogonalization in the Inverse Power Method

dc.contributor.authorStewart, G. W.en_US
dc.date.accessioned2004-05-31T23:00:15Z
dc.date.available2004-05-31T23:00:15Z
dc.date.created1999-09en_US
dc.date.issued1999-10-13en_US
dc.description.abstractWhen the inverse power method is used to compute eigenvectors of a symmetric matrix corresponding to close eigenvalues, the computed eigenvectors may not be orthogonal. The cure for the problem is to orthogonalize the vectors using the Gram--Schmidt algorithm. In this note it is shown that the orthogonalization process does not cause the quality of the eigenvectors to deteriorate. Also cross-referenced as UMIACS-TR-99-64en_US
dc.format.extent86530 bytes
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/1903/1038
dc.language.isoen_US
dc.relation.isAvailableAtDigital Repository at the University of Marylanden_US
dc.relation.isAvailableAtUniversity of Maryland (College Park, Md.)en_US
dc.relation.isAvailableAtTech Reports in Computer Science and Engineeringen_US
dc.relation.isAvailableAtUMIACS Technical Reportsen_US
dc.relation.ispartofseriesUM Computer Science Department; CS-TR-4071en_US
dc.relation.ispartofseriesUMIACS; UMIACS-TR-99-64en_US
dc.titleOn Orthogonalization in the Inverse Power Methoden_US
dc.typeTechnical Reporten_US

Files

Original bundle

Now showing 1 - 2 of 2
No Thumbnail Available
Name:
CS-TR-4071.ps
Size:
84.5 KB
Format:
Postscript Files
Loading...
Thumbnail Image
Name:
CS-TR-4071.pdf
Size:
112.66 KB
Format:
Adobe Portable Document Format
Description:
Auto-generated copy of CS-TR-4071.ps