On Orthogonalization in the Inverse Power Method
dc.contributor.author | Stewart, G. W. | en_US |
dc.date.accessioned | 2004-05-31T23:00:15Z | |
dc.date.available | 2004-05-31T23:00:15Z | |
dc.date.created | 1999-09 | en_US |
dc.date.issued | 1999-10-13 | en_US |
dc.description.abstract | When the inverse power method is used to compute eigenvectors of a symmetric matrix corresponding to close eigenvalues, the computed eigenvectors may not be orthogonal. The cure for the problem is to orthogonalize the vectors using the Gram--Schmidt algorithm. In this note it is shown that the orthogonalization process does not cause the quality of the eigenvectors to deteriorate. Also cross-referenced as UMIACS-TR-99-64 | en_US |
dc.format.extent | 86530 bytes | |
dc.format.mimetype | application/postscript | |
dc.identifier.uri | http://hdl.handle.net/1903/1038 | |
dc.language.iso | en_US | |
dc.relation.isAvailableAt | Digital Repository at the University of Maryland | en_US |
dc.relation.isAvailableAt | University of Maryland (College Park, Md.) | en_US |
dc.relation.isAvailableAt | Tech Reports in Computer Science and Engineering | en_US |
dc.relation.isAvailableAt | UMIACS Technical Reports | en_US |
dc.relation.ispartofseries | UM Computer Science Department; CS-TR-4071 | en_US |
dc.relation.ispartofseries | UMIACS; UMIACS-TR-99-64 | en_US |
dc.title | On Orthogonalization in the Inverse Power Method | en_US |
dc.type | Technical Report | en_US |