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ABSTRACT

When the inverse power method is used to compute eigenvectors of a sym-
metric matrix corresponding to close eigenvalues, the computed eigenvectors
may not be orthogonal. The cure for the problem is to orthogonalize the
vectors using the Gram—Schmidt algorithm. In this note it is shown that
the orthogonalization process does not cause the quality of the eigenvectors
to deteriorate.

The inverse power method is widely used to produce approximate eigenvectors corre-
sponding to a set of precomputed eigenvalues of a symmetric matrix A. Since the method
involves solutions of systems of the form (A — pul)v = u, it is especially well suited for
band matrices of narrow bandwidth, which can be easily factored. The method has
been implemented for tridiagonal matrices in several packages, including the Handbook
codes [7], EISPACK [3], and LAPACK [1].

When the inverse power method is applied to find several eigenvectors, the vectors
corresponding to close eigenvalues may not be orthogonal. The cure for this problem is
to enforce orthogonality using the Gram—Schmidt algorithm. In practice this procedure
has been found to work well. However, no analysis of the process has been given, and in
fact a superficial analysis suggests that the orthogonalization can cause a deterioration in
the quality of the solution. It is the purpose of this note to show why such a deterioration
does not occur.

In the following informal analysis, we will ignore the effects of rounding error, except
in the solution of the system in (1) below. We will let || - || denote the Euclidean vector
norm and the spectral matrix norm. To simplify the analysis we will assume that
Al = 1.

Let A be an eigenvalue of A with normalized right and left eigenvectors z and y. Let
1 be an approximation to A. To compute an approximation z to x one chooses a vector
u with ||u|| = 1 and performs the following calculations.

1. Solve the system (A — pul)v = u. (1)
2. z=v/|v|.

This method has been analyzed in many places (especially [6]). Specifically, is is
easy to see that

ly " ul
|A — pl

1

[o]] =



2 Inverse Power Method

Consequently, if |yTu| is not pathologically small and |u| is a good approximation to A,
then v is large, and the residual

e:(A—,uI)z:L

kel

has norm |[|v||~!, which is small. This has the implication that (y,2) is an exact eigen-
vector of A + F, where ||E|| < 3/||v|| (see [5, p.135]). Thus if u contains a strong
component along y and A differs from p by a few units in the last place, then the com-
puted eigenvector is the eigenvector of a matrix differing from A by terms of order of
the rounding unit. A particularly satisfying aspect of this analysis, is that the decision
of whether to accept z depends only on the size of the vector v, which is known.

The analysis does not guarantee the accuracy of the approximation z. The standard
rounding error analysis for the solution of linear systems shows that the computed vector
v satisfies

(A4 F—pl)v = u, (2)

where ||F|| is of the order of the rounding unit. If \ is the eigenvalue nearest A, then
standard perturbation theory [5] shows that that the the eigenvector « will be perturbed
by an amount bounded by || E||/|A — ;\|, and hence we cannot expect any greater accu-
racy in z. There is not much to be done about this loss of accuracy, since in general
comparable errors would have been introduced when A was rounded to fit the floating-
point arithmetic of the computer in question. However, it does have an undesirable
consequence.

Suppose that we use the inverse power method to compute an approximation £ to
the eigenvector corresponding to A. If A is close to A, the vector 2 will be inaccurate.
Since there is no correlation between the errors in z and 2, the two vectors will not
be orthogonal, and the loss of orthogonality will be proportional to |A — ;\|_1. This is
troublesome, because many numerical procedures involving symmetric matrices assume
a set of orthonormal vectors.

The usual cure for this problem is to reorthogonalize the current vector against the
previously computed vectors. Since the problem does not arise with a well separated
eigenvalue, one only orthogonalizes with respect to the nearby eigenvalues. Specifically,
suppose that we have computed approximate eigenpairs

(:uivzi)v i:1727"'7k7

where the p; are close according to some tolerance and the z; are orthonormal to working
accuracy. We will assume that the residuals

ei = (A—pil)z
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are satisfactorily small.

Suppose we now wish to add an approximation to the eigenvector corresponding to
p. The procedure is to compute z as in (1) and then orthogonalize z as follows.

1. rizziTz, 1=1,2,...,k.
LW = Z— Tz — ToZg — v — T2k (3)
3. & =w/||w|.

It is well known [2, 4] that if there is no severe cancellation in the computation of w—
which is to say that z is reasonably independent of the zp — then w will be orthogonal
to the z; working accuracy. In what follows we will assume that z is independent of the
21, an assumption which is observed to be true in practice.!

As a practical matter, this orthogonalization procedure works quite well. However,
that very fact requires an explanation. The reason is that in order to preserve reasonable
orthogonality between vectors in different clusters, a fairly loose clustering criterion must
be used. For example, the software mentioned above regards an eigenvalues as part of
a cluster if they it is separated from its companion by 1073, But if pq, say, and pu differ
by 1072 then (A — ul)z; must be of order 1072, It follows that the formula 2 in (3)
expresses x as a linear combination of vectors that may not have small residuals with
respect to p. Why then does the residual of 2 remain small?

To answer this question, it is convenient to cast the algorithm in terms of matrices.
Let

Z=(z - z), E=(er - ), and M =diag(p,...,u),
so that
AZ =ZM + E. (4)
Then our orthogonalization algorithm can be written as follows.

1. r=27712
w=z—Zr.
3. Z=w/||w].

'The reader may have noticed that the method we have given here is the classical Gram—Schmidt
algorithm, which is inferior to the modified Gram—Schmidt algorithm. However, for our application, in
which we do not expect cancellation, the two methods give essentially the same results.
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It is now easy to calculate the residual corresponding to w:

(A= plyw = (A - uI)(I - 227):
=(A—pul)z+(A—-pl)Zr
=(A-pl)z+(A—pul)Zr (5)
=(A—pul)z+(E+ZM —uZ)r by (4)
=(A—pul)z+ Er+ Z(M — pl)r.

The last expression in (5) quantifies the problem raised above. The first term (A —pul)z
is small provided v in (1) is large. Since ||r|| < 1 and the vectors z; are assumed to have
small residuals, the term Er is also small. However, the matrix (M — pul) can be as
large as the clustering tolerance. Thus this formula alone does not guarantee a small
residual.

The cure for the problem is to investigate the structure of the vector r. Since

(A+ F—pliv=u

[see (2)], it follows that

Ty
ol =7V Az+ 7Ty — ,uZTZ
v

=EY 4 72T Pe 4 (M — 72" 2
Hence
7%y
[ED

If this expression is substituted in the last expression in (5), we get

r=2Yz=(M—pul)™? ( e ZTFZ) . (6)

7Ty

This expression is wholly satisfactory. As we have noted, the first two terms in the
right-hand side are small. Then quantity ZTu/||v|| is small because v is large, and the
other terms are small because I and F are small. Thus the residual for w is small. Since
we are assuming no significant cancellation in the computation of w, its normalization
does not magnify the residual significantly.

The result depends on the multiplicative cancellation of M — pl and (M — pl)~!
when (5) and (6) are combined to give (7). The common sense of this cancellation is as
follows. By (6) the lack of orthogonality between, say, z; and z is inversely proportional
to |py — |- If this quantity is large (e.g., 107%), then z; and z are nearly orthogonal,
and 7y = z{ z must be small. Thus the z; with large residuals with respect to p in (5)

have small multipliers r;.

(A—plhw=(A- ,uI)Z—I—Er—I—Z( ETZ—ZTFZ). (7)
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