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On Orthogonalization in theInverse Power MethodG. W. StewartABSTRACTWhen the inverse power method is used to compute eigenvectors of a sym-metric matrix corresponding to close eigenvalues, the computed eigenvectorsmay not be orthogonal. The cure for the problem is to orthogonalize thevectors using the Gram{Schmidt algorithm. In this note it is shown thatthe orthogonalization process does not cause the quality of the eigenvectorsto deteriorate.The inverse power method is widely used to produce approximate eigenvectors corre-sponding to a set of precomputed eigenvalues of a symmetric matrixA. Since the methodinvolves solutions of systems of the form (A � �I)v = u, it is especially well suited forband matrices of narrow bandwidth, which can be easily factored. The method hasbeen implemented for tridiagonal matrices in several packages, including the Handbookcodes [7], EISPACK [3], and LAPACK [1].When the inverse power method is applied to �nd several eigenvectors, the vectorscorresponding to close eigenvalues may not be orthogonal. The cure for this problem isto enforce orthogonality using the Gram{Schmidt algorithm. In practice this procedurehas been found to work well. However, no analysis of the process has been given, and infact a super�cial analysis suggests that the orthogonalization can cause a deterioration inthe quality of the solution. It is the purpose of this note to show why such a deteriorationdoes not occur.In the following informal analysis, we will ignore the e�ects of rounding error, exceptin the solution of the system in (1) below. We will let k � k denote the Euclidean vectornorm and the spectral matrix norm. To simplify the analysis we will assume thatkAk = 1.Let � be an eigenvalue of A with normalized right and left eigenvectors x and y. Let� be an approximation to �. To compute an approximation z to x one chooses a vectoru with kuk = 1 and performs the following calculations.1: Solve the system (A� �I)v = u.2: z = v=kvk. (1)This method has been analyzed in many places (especially [6]). Speci�cally, is iseasy to see that kvk � jyTujj�� �j :1



2 Inverse Power MethodConsequently, if jyTuj is not pathologically small and j�j is a good approximation to �,then v is large, and the residual e = (A� �I)z = ukvkhas norm kvk�1, which is small. This has the implication that (�; z) is an exact eigen-vector of A + E, where kEk � 3=kvk (see [5, p. 135]). Thus if u contains a strongcomponent along y and � di�ers from � by a few units in the last place, then the com-puted eigenvector is the eigenvector of a matrix di�ering from A by terms of order ofthe rounding unit. A particularly satisfying aspect of this analysis, is that the decisionof whether to accept z depends only on the size of the vector v, which is known.The analysis does not guarantee the accuracy of the approximation z. The standardrounding error analysis for the solution of linear systems shows that the computed vectorv satis�es (A+ F � �I)v = u; (2)where kFk is of the order of the rounding unit. If �̂ is the eigenvalue nearest �, thenstandard perturbation theory [5] shows that that the the eigenvector x will be perturbedby an amount bounded by kEk=j�� �̂j, and hence we cannot expect any greater accu-racy in z. There is not much to be done about this loss of accuracy, since in generalcomparable errors would have been introduced when A was rounded to �t the 
oating-point arithmetic of the computer in question. However, it does have an undesirableconsequence.Suppose that we use the inverse power method to compute an approximation ẑ tothe eigenvector corresponding to �̂. If �̂ is close to �, the vector ẑ will be inaccurate.Since there is no correlation between the errors in z and ẑ, the two vectors will notbe orthogonal, and the loss of orthogonality will be proportional to j� � �̂j�1. This istroublesome, because many numerical procedures involving symmetric matrices assumea set of orthonormal vectors.The usual cure for this problem is to reorthogonalize the current vector against thepreviously computed vectors. Since the problem does not arise with a well separatedeigenvalue, one only orthogonalizes with respect to the nearby eigenvalues. Speci�cally,suppose that we have computed approximate eigenpairs(�i; zi); i = 1; 2; : : : ; k;where the �i are close according to some tolerance and the zi are orthonormal to workingaccuracy. We will assume that the residualsei = (A� �iI)zi



Inverse Power Method 3are satisfactorily small.Suppose we now wish to add an approximation to the eigenvector corresponding to�. The procedure is to compute z as in (1) and then orthogonalize z as follows.1: ri = zTi z; i = 1; 2; : : : ; k.2: w = z � r1z1 � r2z2 � � � � � rkzk .3: ~x = w=kwk. (3)It is well known [2, 4] that if there is no severe cancellation in the computation of w|which is to say that z is reasonably independent of the zk |then w will be orthogonalto the zk working accuracy. In what follows we will assume that z is independent of thezk , an assumption which is observed to be true in practice.1As a practical matter, this orthogonalization procedure works quite well. However,that very fact requires an explanation. The reason is that in order to preserve reasonableorthogonality between vectors in di�erent clusters, a fairly loose clustering criterion mustbe used. For example, the software mentioned above regards an eigenvalues as part ofa cluster if they it is separated from its companion by 10�3. But if �1, say, and � di�erby 10�3 then (A � �I)z1 must be of order 10�3. It follows that the formula 2 in (3)expresses x as a linear combination of vectors that may not have small residuals withrespect to �. Why then does the residual of x remain small?To answer this question, it is convenient to cast the algorithm in terms of matrices.Let Z = (z1 � � � zk); E = (e1 � � � ek); and M = diag(�1; : : : ; �k);so that AZ = ZM + E: (4)Then our orthogonalization algorithm can be written as follows.1: r = ZTz.2: w = z � Zr.3: ~z = w=kwk.1The reader may have noticed that the method we have given here is the classical Gram{Schmidtalgorithm, which is inferior to the modi�ed Gram{Schmidt algorithm. However, for our application, inwhich we do not expect cancellation, the two methods give essentially the same results.



4 Inverse Power MethodIt is now easy to calculate the residual corresponding to w:(A� �I)w = (A� �I)(I � ZZT)z= (A� �I)z + (A� �I)Zr= (A� �I)z + (A� �I)Zr= (A� �I)z + (E + ZM � �Z)r by (4)= (A� �I)z + Er+ Z(M � �I)r: (5)The last expression in (5) quanti�es the problem raised above. The �rst term (A��I)zis small provided v in (1) is large. Since krk � 1 and the vectors zi are assumed to havesmall residuals, the term Er is also small. However, the matrix (M � �I) can be aslarge as the clustering tolerance. Thus this formula alone does not guarantee a smallresidual.The cure for the problem is to investigate the structure of the vector r. Since(A+ F � �I)v = u[see (2)], it follows thatZTukvk = ZTAz + ZTFz � �ZTz= ETz + ZTFz + (M � �I)ZTz:Hence r = ZTz = (M � �I)�1�ZTukvk � ETz � ZTFz� : (6)If this expression is substituted in the last expression in (5), we get(A� �I)w = (A� �I)z +Er+ Z �ZTukvk �ETz � ZTFz� : (7)This expression is wholly satisfactory. As we have noted, the �rst two terms in theright-hand side are small. Then quantity ZTu=kvk is small because v is large, and theother terms are small because E and F are small. Thus the residual for w is small. Sincewe are assuming no signi�cant cancellation in the computation of w, its normalizationdoes not magnify the residual signi�cantly.The result depends on the multiplicative cancellation of M � �I and (M � �I)�1when (5) and (6) are combined to give (7). The common sense of this cancellation is asfollows. By (6) the lack of orthogonality between, say, z1 and z is inversely proportionalto j�1 � �j. If this quantity is large (e.g., 10�3), then z1 and z are nearly orthogonal,and r1 = zT1 z must be small. Thus the zi with large residuals with respect to � in (5)have small multipliers ri.
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