A Combinatorial Formula for Test Functions with Pro-p Iwahori Level Structure

dc.contributor.advisorHaines, Thomas Jen_US
dc.contributor.authorHorn, Marcen_US
dc.contributor.departmentMathematicsen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2017-06-22T05:53:17Z
dc.date.available2017-06-22T05:53:17Z
dc.date.issued2017en_US
dc.description.abstractThe Test Function Conjecture due to Haines and Kottwitz predicts that the geometric Bernstein center is a source of test functions, in the sense of the Langlands- Kottwitz method for expressing the local semisimple Hasse-Weil zeta function of a Shimura variety in terms of automorphic L-functions. Haines and Rapoport found an explicit formula for such test functions in the Drinfeld case with pro-p Iwahori level structure. This thesis generalizes the Haines-Rapoport formula for the Drinfeld case to a broader class of split groups. The main theorem presents a new formula for test functions with pro-p Iwahori level structure, which can be computed through some combinatorics on Coxeter groups. The final chapter includes complete descriptions of the test function in certain low-rank general linear and symplectic group examples.en_US
dc.identifierhttps://doi.org/10.13016/M2XW00
dc.identifier.urihttp://hdl.handle.net/1903/19353
dc.language.isoenen_US
dc.subject.pqcontrolledMathematicsen_US
dc.subject.pquncontrolledbernstein centeren_US
dc.subject.pquncontrollediwahori subgroupen_US
dc.subject.pquncontrolledlanglands programen_US
dc.subject.pquncontrolledshimura varietyen_US
dc.subject.pquncontrolledtest functionen_US
dc.titleA Combinatorial Formula for Test Functions with Pro-p Iwahori Level Structureen_US
dc.typeDissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Horn_umd_0117E_17851.pdf
Size:
658.28 KB
Format:
Adobe Portable Document Format