Motion Reconstruction of Animal Groups: From Schooling Fish to Swarming Mosquitoes

Loading...
Thumbnail Image

Files

Publication or External Link

Date

2012

Citation

DRUM DOI

Abstract

The long-term goal of this research is to provide kinematic data for the design and validation of spatial models of collective behavior in animal groups. The specific research objective of this dissertation is to apply methods from nonlinear estimation and computer vision to construct multi-target tracking systems that process multi-view calibrated video to reconstruct the three-dimensional movement of animals in a group. We adapt the tracking systems for the study of two animal species: Danio aequipinnatus, a common species of schooling fish, and Anopheles gambiae, the most important vector of malaria in sub-Saharan Africa. Together these tracking systems span variability in target size on image, density, and movement. For tracking fish, we automatically initialize, predict, and reconstruct shape trajectories of multiple fish through occlusions. For mosquitoes, which appear appear as faded streaks on in-field footage, we provide methods to extract velocity information from the streaks, adaptively seek missing measurements, and resolve occlusions within a multi-hypothesis framework. In each case the research has yielded an unprecedented volume of trajectory data for subsequent analysis. We present kinematic data of fast-start response in fish schools and first-ever trajectories of wild mosquito swarming and mating events. The broader impact of this work is to advance the understanding of animal groups for the design of bio-inspired robotic systems, where, similar to the animal groups we study, the collective is able to perform tasks far beyond the capabilities of a single inexpensive robot.

Notes

Rights