Population Studies of Tidal Disruption Events and Their Hosts: Understanding Host Galaxy Preferences and the Origin of the Ultraviolet and Optical Emission
Files
Publication or External Link
Date
Authors
Citation
DRUM DOI
Abstract
It is well-established that the majority of galaxies harbor a supermassive black hole (SMBH) in their nucleus. While some of these SMBHs are easily studied either through signatures of persistent gas-fueled accretion or direct observations of the SMBH's influence on stars and gas in its potential well, many more are elusive, providing no obvious evidence of their existence. One way to detect these dormant SMBHs is through the tidal disruption of a star that wanders too close and is torn apart under the tidal stress. These tidal disruption events (TDEs) illuminate otherwise difficult-to-study dim or distant galaxy nuclei, acting as cosmic signposts announcing the presence of the SMBH lurking there through luminous flares observed across the electromagnetic spectrum. These flares can, in principle, be used to extract information about the SMBH itself, and can therefore serve as important probes of SMBH growth and evolution. TDE host galaxies can be used to study the connection between SMBHs and their environments, an important goal in understanding the origin of SMBHs, galaxy formation, and SMBH co-evolution. My dissertation addresses both of these important facets of TDEs, their light curves and their hosts, to understand not only the events themselves but how they can be used to study SMBHs.
First, I studied a sample of 30 optically selected TDEs from the Zwicky Transient Facility (ZTF), the largest sample of TDEs discovered from a single survey yet. After performing a careful light curve analysis, I uncovered several correlations between light curve parameters which indicate that the properties of the black hole are imprinted on the light curve. I also fit the light curves using tools that yield black hole mass estimates and I found no correlation between these estimates and the host galaxy stellar mass. I found no difference between the optical light curve properties, apart from the peak luminosity, of the X-ray bright and X-ray faint TDEs in this sample. This provides clues as to the origin of the optical emission and may support a scenario where the viewing angle is responsible for the observed emission. Lastly, I presented a new spectral class of TDE, TDE-featureless, which in contrast to other events, show no broad lines in their optical spectra. This new class may be connected to the rare class of jetted TDEs.
Next, I studied a subset of host galaxies in the ZTF sample of TDEs. I examined their optical colors, morphology, and star-formation histories. I found that TDE hosts can be classified as ``green'', in a phase between red, inactive galaxies and blue, star-forming galaxies. Morphologically, the TDE hosts are centrally concentrated, more so than galaxies of similar mass and color. By looking at the optical spectra of the TDE hosts, which can be used to estimate the current star formation and the star formation history, I found that TDE host populations are dominated by the rare class of E+A, or post-starburst, galaxies. In tandem with the other peculiar photometric and morphological properties, this points to mergers as the likely origin for TDE hosts.
I extended this study of TDE hosts by using integral field spectroscopy to infer black hole masses via the $M_{\rm BH} - \sigma_\star$ relation and investigate large-scale stellar kinematics. I found that the black hole mass distribution for TDE hosts is consistent with the theoretical prediction that they should be dominated by lower mass SBMHs. Interestingly, one TDE-featureless object was found to have a black hole mass of $\log(M_{\rm BH}/M_\odot) = 8.01$, which is likely above the Hills mass for the disruption of a solar-type star and could necessitate a rapid spin for this particular black hole. If high spin is required to launch relativistic jets, this may further support the connection between featureless TDEs and jetted TDEs. The large-scale kinematics of a galaxy are strongly tied to its merger and star formation history. I found that TDE hosts share similar kinematic properties to E+A galaxies, which are thought to be post-merger.
Lastly, I presented further observations of the jetted TDE AT2022cmc. This event, discovered in the optical, presented an opportunity to place this rare class of TDE in the context of the larger TDE population. I performed a careful light curve analysis that accounts for both the thermal and non-thermal components in the light curve. I showed that the thermal component of AT2022cmc is similar to the TDE-featureless class of events and follows correlations presented for TDE light curve properties found in this thesis.