Optical Time Domain and Radio Imaging Analyses of the Dynamic Hearts of AGN

dc.contributor.advisorMushotzky, Richarden_US
dc.contributor.authorSmith, Krista Lynneen_US
dc.contributor.departmentAstronomyen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2017-09-14T05:46:33Z
dc.date.available2017-09-14T05:46:33Z
dc.date.issued2017en_US
dc.description.abstractActive galactic nuclei (AGN) are among the most extreme objects in the universe: galaxies with a central supermassive black hole feeding on gas from a hot accretion disk. Despite their potential as powerful tools to study topics ranging from relativity to cosmology, they remain quite mysterious. In the first portion of this thesis, we explore how an AGN may influence the formation of stars in its host galaxy. Using high-resolution 22 GHz radio imaging of an X-ray selected sample of radio-quiet AGN, we find that the far-infrared radio correlation for normal star forming galaxies remains valid within a few hundred parsecs of the central engine. Because the core flux is often spatially isolated from star formation, we can also determine that the radio emission in radio-quiet AGN is consistent with both coronal and disk-jet coupling models. Finally, we find that AGN with jet-like radio morphologies have suppressed star formation, possibly indicating ongoing feedback. The second portion of this thesis uses optical AGN light curves to study the physics of accretion. The Kepler spacecraft produces groundbreaking light curves, but its fixed field of view only contained a handful of known AGN. We conduct an X-ray survey of this field, yielding 93 unique X-ray sources identified by optical follow-up spectroscopy as a mixture of AGN and stars. For the AGN, we spectroscopically measure black hole masses and accretion rates. We then analyze a sample of 22 Kepler AGN light curves. We develop a customized pipeline for AGN science with Kepler, a necessary step since the initial data was optimized for the unique goal of exoplanet detection. The light curves display an astonishing variety of behaviors in a new regime of optical variability inaccessible with previous facilities. We find power spectral slopes inconsistent with the damped random walk model, characteristic variability timescales, correlations of variability properties with physical parameters, and bimodal flux distributions possibly consistent with passing obscuring material. We also conclude that this regime of optical variability is not produced by simple X-ray reprocessing. Finally, we explain how this work supports future robust accretion studies with upcoming large timing surveys.en_US
dc.identifierhttps://doi.org/10.13016/M2VM42X9D
dc.identifier.urihttp://hdl.handle.net/1903/20002
dc.language.isoenen_US
dc.subject.pqcontrolledAstronomyen_US
dc.subject.pqcontrolledAstrophysicsen_US
dc.subject.pquncontrolledActive galaxiesen_US
dc.subject.pquncontrolledAGNen_US
dc.subject.pquncontrolledStar Formationen_US
dc.subject.pquncontrolledTime Domainen_US
dc.titleOptical Time Domain and Radio Imaging Analyses of the Dynamic Hearts of AGNen_US
dc.typeDissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Smith_umd_0117E_18394.pdf
Size:
17.87 MB
Format:
Adobe Portable Document Format