Non-Linear Geometric PDEs: Algorithms, Numerical Analysis and Computation

dc.contributor.advisorNochetto, Ricardo Hen_US
dc.contributor.authorNtogkas, Dimitriosen_US
dc.contributor.departmentMathematicsen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2018-07-17T05:54:14Z
dc.date.available2018-07-17T05:54:14Z
dc.date.issued2018en_US
dc.description.abstractThis dissertation presents the numerical treatment of two geometric non-linear PDEs, the Monge-Amp\`ere Equation and the large bending deformation of plates under an isometry constraint. For the first problem we design a two-scale method and prove rates of convergence in the $L^\infty$ norm, which is an important progress in the numerical analysis of the Monge-Amp\`ere equation and similar equations. For the second problem, we examine the deformation of the mid-plane of the plate and use the fact that it minimizes an energy functional under the isometry constraint. We design a Discontinuous Galerkin method that allows us to construct discrete minimizers of an appropriate energy functional and prove $\Gamma-$convergence to the exact minimizers. We set the theoretical foundation for this method using the problem of a single layer plate and then explore computationally the applicability of the method in more complicated and physically interesting cases using a bilayer model.en_US
dc.identifierhttps://doi.org/10.13016/M2X63B83D
dc.identifier.urihttp://hdl.handle.net/1903/20866
dc.language.isoenen_US
dc.subject.pqcontrolledApplied mathematicsen_US
dc.subject.pquncontrolledBilayeren_US
dc.subject.pquncontrolledIsometry constrainten_US
dc.subject.pquncontrolledLarge Bendingen_US
dc.subject.pquncontrolledMonge-Amp\`ereen_US
dc.subject.pquncontrolledNumerical geometric PDEsen_US
dc.subject.pquncontrolledSingle layeren_US
dc.titleNon-Linear Geometric PDEs: Algorithms, Numerical Analysis and Computationen_US
dc.typeDissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ntogkas_umd_0117E_18844.pdf
Size:
2.84 MB
Format:
Adobe Portable Document Format