Data Augmentations on Quantum Wasserstein Generative Adversarial Networks

dc.contributor.advisorJabeen, Shabnam
dc.contributor.authorLee, Joey
dc.contributor.authorLai, Devon
dc.contributor.authorBanerjee, Ayan
dc.date.accessioned2024-12-17T15:31:18Z
dc.date.available2024-12-17T15:31:18Z
dc.date.issued2024-12-11
dc.description.abstractThe goal of this project is to explore Quantum Wasserstein Generative Adversarial Networks (QWGANs) and address its limitations by incorporating data augmentation techniques such as Elastic Transforms and Gaussian/Poisson Noise to simulate real-world imperfections, such as noise and distortions. With this we test the robustness of the QWGAN framework and compare QWGAN performance with such data modification techniques against one another
dc.identifierhttps://doi.org/10.13016/md58-vmpa
dc.identifier.urihttp://hdl.handle.net/1903/33547
dc.language.isoen_US
dc.relation.isAvailableAtDepartment of Anthropology
dc.relation.isAvailableAtCollege of Behavioral and Social Sciences
dc.relation.isAvailableAtDigital Repository at the University of Maryland
dc.relation.isAvailableAtUniversity of Maryland (College Park, Md)
dc.subjectThe First-Year Innovation & Research Experience (FIRE)
dc.subjectFIRE Quantum Machine Learning
dc.subjectquantum computing
dc.subjectmachine learning
dc.titleData Augmentations on Quantum Wasserstein Generative Adversarial Networks
dc.typeOther

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2024_TheFIRESummit_Lai_Devon.pdf
Size:
864.19 KB
Format:
Adobe Portable Document Format