OPTIMAL VISION-BASED POSITION ESTIMATION OF AN UNDERWATER SPACE SIMULATION ROBOT

dc.contributor.advisorAtkins, Ella Men_US
dc.contributor.advisorSanner, Robert Men_US
dc.contributor.authorSmithanik, Jeffrey Russellen_US
dc.contributor.departmentAerospace Engineeringen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2004-10-09T05:18:19Z
dc.date.available2004-10-09T05:18:19Z
dc.date.issued2004-08-30en_US
dc.description.abstractThis thesis describes the development of the Vision Positioning System (VPS), a real-time 3-D inertial translational state estimation system for free-flying neutral buoyancy space simulation robots. Key contributions include a technique for the accurate calibration of long-baseline underwater vision systems, and a three degree of freedom Extended Kalman Filter (EKF) that merges camera measurements with robot telemetry to create an optimal estimate of 3-D translational position and velocity. Results from static and dynamic underwater positioning tests are presented that characterize the system accuracy. Static tests indicate VPS is capable of locating the robot with 3 to 4 cm accuracy, while dynamic test results show similar accuracy given ideal lighting conditions and flight in a region of complete camera coverage. The results indicate that with further development to correct for lighting and better reject erroneous camera measurements, VPS has the potential for accuracy comparable to that achieved by GPS navigation systemsen_US
dc.format.extent4541456 bytes
dc.format.extent4541456 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1903/1879
dc.language.isoen_US
dc.subject.pqcontrolledEngineering, Aerospaceen_US
dc.subject.pquncontrolledNeutral Buoyancyen_US
dc.subject.pquncontrolledSpace SImulationen_US
dc.subject.pquncontrolledspacecraften_US
dc.titleOPTIMAL VISION-BASED POSITION ESTIMATION OF AN UNDERWATER SPACE SIMULATION ROBOTen_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
jsmithanik_ms_thesis.pdf
Size:
4.33 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
umi-umd-1809.pdf
Size:
4.33 MB
Format:
Adobe Portable Document Format