Tableau formulas for skew Schubert polynomials

dc.contributor.authorTamvakis, Harry
dc.date.accessioned2024-06-24T19:03:26Z
dc.date.available2024-06-24T19:03:26Z
dc.date.issued2023-03-24
dc.description.abstractThe skew Schubert polynomials are those that are indexed by skew elements of the Weyl group, in the sense of Tamvakis [J. reine angew. Math. 652 (2011), 207–244]. We obtain tableau formulas for the double versions of these polynomials in all four classical Lie types, where the tableaux used are fillings of the associated skew Young diagram. These are the first such theorems for symplectic and orthogonal Schubert polynomials, even in the single case. We also deduce tableau formulas for double Schur, double theta, and double eta polynomials, in their specializations as double Grassmannian Schubert polynomials. The latter results generalize the tableau formulas for symmetric (and single) Schubert polynomials due to Littlewood (in type A) and the author (in types B, C, and D).
dc.description.urihttps://doi.org/10.1112/blms.12828
dc.identifierhttps://doi.org/10.13016/h8o8-9hgw
dc.identifier.citationTamvakis, H. (2023), Tableau formulas for skew Schubert polynomials. Bull. London Math. Soc., 55: 1926-1943.
dc.identifier.urihttp://hdl.handle.net/1903/32675
dc.language.isoen_US
dc.publisherWiley
dc.relation.isAvailableAtCollege of Computer, Mathematical & Natural Sciencesen_us
dc.relation.isAvailableAtMathematicsen_us
dc.relation.isAvailableAtDigital Repository at the University of Marylanden_us
dc.relation.isAvailableAtUniversity of Maryland (College Park, MD)en_us
dc.titleTableau formulas for skew Schubert polynomials
dc.typeArticle
local.equitableAccessSubmissionNo

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bulletin of London Math Soc - 2023 - Tamvakis - Tableau formulas for skew Schubert polynomials.pdf
Size:
241.59 KB
Format:
Adobe Portable Document Format