On the Theoretical Foundations and Principles of Organizational Safety Risk Analysis

Loading...
Thumbnail Image

Files

umi-umd-4700.pdf (4.32 MB)
No. of downloads: 4625

Publication or External Link

Date

2007-08-02

Citation

DRUM DOI

Abstract

This research covers a targeted review of relevant theories and technical domains related to the incorporation of organizational factors into technological systems risk. In the absence of a comprehensive set of principles and modeling guidelines rooted in theory and empirical studies, all models look equally good, or equally poor, with very little basis to discriminate and build confidence. Therefore, this research focused on the possibility of improving the theoretical foundations and principles for the field of Organizational Safety Risk Analysis. Also, a process for adapting a hybrid modeling technique, in order to operationalize the theoretical organizational safety frameworks, is proposed. Candidate ingredients are techniques from Risk Assessment, Human Reliability, Social and Behavioral Science, Business Process Modeling, and Dynamic Modeling. Then, as a realization of aforementioned modeling principles, an organizational safety risk framework, named Socio-Technical Risk Analysis (SoTeRiA)is developed. The proposed framework considers the theoretical relation between organizational safety culture, organizational safety structure/practices, and organizational safety climate, with specific distinction between safety culture and safety climate. A systematic view of safety culture and safety climate fills an important gap in modeling complex system safety risk, and thus the proposed organizational safety risk theory describing the theoretical relation between two concepts to bridge this gap. In contrast to the current safety causal models which do not adequately consider the multilevel nature of the issue, the proposed multilevel causal model explicitly recognizes the relationships among constructs at multiple levels of analysis. Other contributions of this research are in implementing the proposed organizational safety framework in the aviation domain, particularly the airline maintenance system. The US Federal Aviation Administration (FAA), which has sponsored this research over the past three years, has recognized the issue of organizational factors as one of the most critical questions in the quest to achieve 80% reduction in aviation accidents. An example of the proposed hybrid modeling environment including an integration of System Dynamics (SD), Bayesian Belief Network (BBN), Event Sequence Diagram (ESD), and Fault Tree (FT), is also applied in order to demonstrate the value of hybrid frameworks. This hybrid technique integrates deterministic and probabilistic modeling perspectives, and provides a flexible risk management tool.

Notes

Rights