Approximate Policy Iteration for Semiconductor Fab-Level Decision Making - a Case Study

dc.contributor.advisorMarcus, Steven I.en_US
dc.contributor.authorHe, Yingen_US
dc.contributor.authorBhatnagar, Shalabhen_US
dc.contributor.authorFu, Michael C.en_US
dc.contributor.authorMarcus, Steven I.en_US
dc.contributor.departmentISRen_US
dc.date.accessioned2007-05-23T10:09:32Z
dc.date.available2007-05-23T10:09:32Z
dc.date.issued2000en_US
dc.description.abstractIn this paper, we propose an approximate policy iteration (API) algorithm for asemiconductor fab-level decision making problem. This problem is formulated as adiscounted cost Markov Decision Process (MDP), and we have applied exact policy iterationto solve a simple example in prior work. However, the overwhelmingcomputational requirements of exact policy iteration prevent its application forlarger problems. Approximate policy iteration overcomes this obstacle by approximating thecost-to-go using function approximation. Numerical simulation on the same example showsthat the proposed API algorithm leads to a policy with cost close to that of the optimalpolicy.en_US
dc.format.extent283099 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1903/6142
dc.language.isoen_USen_US
dc.relation.ispartofseriesISR; TR 2000-49en_US
dc.subjectApproximate Policy Iterationen_US
dc.subjectSemiconductor Fab-Level Decision Makingen_US
dc.subjectMarkov Decision Processesen_US
dc.subjectDiscounted Cost Problemen_US
dc.subjectSensor-Actuator Networksen_US
dc.subjectNext-Generation Product Realization Systemsen_US
dc.titleApproximate Policy Iteration for Semiconductor Fab-Level Decision Making - a Case Studyen_US
dc.typeTechnical Reporten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR_2000-49.pdf
Size:
276.46 KB
Format:
Adobe Portable Document Format