Metastable Distributions for Semi-Markov Processes

dc.contributor.advisorKoralov, Leoniden_US
dc.contributor.authorMohammed Imtiyas, Ishfaaq Ahameden_US
dc.contributor.departmentMathematicsen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2024-09-23T06:06:31Z
dc.date.available2024-09-23T06:06:31Z
dc.date.issued2024en_US
dc.description.abstractIn this work, we consider semi-Markov processes whose transition times and transitionprobabilities depend on a small parameter ε. Understanding the asymptotic behavior of such processes is needed in order to study the asymptotics of various randomly perturbed dynamical and stochastic systems. The long-time behavior of a semi-Markov process Xε t depends on how the point (1/ε, t(ε)) approaches infinity. We introduce the notion of complete asymptotic regularity (a certain asymptotic condition on transition probabilities and transition times), originally developed for parameter-dependent Markov chains, which ensures the existence of the metastable distribution for each initial point and a given time scale t(ε). The result may be viewed as a generalization of the ergodic theorem to the case of parameter-dependent semi-Markov processes.en_US
dc.identifierhttps://doi.org/10.13016/yhbe-rcqo
dc.identifier.urihttp://hdl.handle.net/1903/33388
dc.language.isoenen_US
dc.subject.pqcontrolledMathematicsen_US
dc.subject.pquncontrolledErgodic Theoremsen_US
dc.subject.pquncontrolledLimit Theoremsen_US
dc.subject.pquncontrolledMarkov Renewal Processesen_US
dc.subject.pquncontrolledMetastable Distributionsen_US
dc.titleMetastable Distributions for Semi-Markov Processesen_US
dc.typeDissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MohammedImtiyas_umd_0117E_24574.pdf
Size:
433.49 KB
Format:
Adobe Portable Document Format