SL(3,C)-Character Varieties and RP2-Structures on a Trinion

dc.contributor.advisorGoldman, William M.en_US
dc.contributor.authorLawton, Sean Dodden_US
dc.contributor.departmentMathematicsen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2006-06-14T05:40:45Z
dc.date.available2006-06-14T05:40:45Z
dc.date.issued2006-04-17en_US
dc.description.abstractDenote the free group on two letters by F2 and the SL(3,C)-representation variety of F2 by R = Hom(F2, SL(3, C)). There is a SL(3,C)-action on the coordinate ring of R, and the geometric points of the subring of invariants is an affine variety X. We determine explicit minimal generators and defining relations for the subring of invariants and show X is a hyper-surface in C9. Our choice of generators exhibit Out(F2) symmetries which allow for a succinct expression of the defining relations. We then show C[X] is a Poisson algebra with respect to a presentation of F2 imposed by a punctured surface. We work out the bracket on all generators when the surface is a thrice punctured sphere, or a trinion. The moduli space of convex real projective structures on a trinion, denoted by P,is a subset of X. Lastly, we determine explicit conditions in terms of C[X] that distinguish this moduli space.en_US
dc.format.extent394319 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1903/3414
dc.language.isoen_US
dc.subject.pqcontrolledMathematicsen_US
dc.subject.pquncontrolledCharacter Varietyen_US
dc.subject.pquncontrolledPoissonen_US
dc.subject.pquncontrolledConvexen_US
dc.subject.pquncontrolledProjectiveen_US
dc.subject.pquncontrolledModulien_US
dc.titleSL(3,C)-Character Varieties and RP2-Structures on a Trinionen_US
dc.typeDissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
umi-umd-3227.pdf
Size:
385.08 KB
Format:
Adobe Portable Document Format