Metals in Arc Magmas: The Role of Cu-Rich Sulfide Phases
dc.contributor.advisor | Candela, Philip A | en_US |
dc.contributor.advisor | Piccoli, Philip M | en_US |
dc.contributor.author | Mengason, Michael James | en_US |
dc.contributor.department | Geology | en_US |
dc.contributor.publisher | Digital Repository at the University of Maryland | en_US |
dc.contributor.publisher | University of Maryland (College Park, Md.) | en_US |
dc.date.accessioned | 2012-02-17T06:45:08Z | |
dc.date.available | 2012-02-17T06:45:08Z | |
dc.date.issued | 2011 | en_US |
dc.description.abstract | Based on experiments performed on hydrous andesitic melts at 1000°C, 150 MPa, <italic>f</italic>O<subscript>2</subscript> from the Co-CoO to Ni-NiO buffer, and log <italic>f</italic>S<subscript>2</subscript> equal to -0.5 to -1.5 (bar), greater than 32 ± 4 ppm copper (all uncertainties = 1 sigma, standard deviation of the mean) in the silicate melt favors the formation of a Cu-Fe sulfide liquid (CFSL) relative to pyrrhotite at sulfide saturation. This concentration is well within the range encountered in intrusive and extrusive rocks suggesting that saturation by sulfide liquids is a common occurrence in magmatic arc systems consistent with observations in naturally occurring andesites. Nernst-type partition coefficients determined from these experiments highlight the importance of accurately modeling the composition of the sulfide phase present during partial melting or fractional crystallization: D<superscript>pyrrhotite/melt </superscript>= 1320 ± 220 for Cu, 1.73 ± 0.37 for Mo, 90 ± 19 for Ag, and 500 ± 87 for Au, whereas D<superscript>CFSL/melt </superscript>= 7,800 ± 1,400 for Cu, 0.45 ± 0.14 for Mo, 6,800 ± 1,300 for Ag, and 84,000 ± 19,000 for Au. Data from these experiments support a direct correlation between the solubility of gold and the concentration of sulfur in the silicate melt at low <italic>f</italic>O<subscript>2</subscript>, as well as a dependence of the solubility of gold on <italic>f</italic>S<subscript>2</subscript><superscript>0.25</superscript> in pyrrhotite and CFSL. As a part of this research, pyrrhotite of variable copper concentration was equilibrated at 1000°C in sealed evacuated silica tubes to determine a method that allows the equation of Toulmin and Barton (1964) to be used to calculate <italic>f</italic>S<subscript>2</subscript> for Cu-bearing pyrrhotite. This method is consistent for pyrrhotite with up to 6 wt % Cu by using N=2*[(XCu+XFe)/(1.5XCu+XFe+XS)]. These data suggest that separation of CFSL from the magma along with crystalline phases during fractional crystallization can reduce the likelihood of magmatic hydrothermal ore formation. For example, modeling 30 % Rayleigh fractional crystallization (F=1.0 to F=0.7), with 0.1% sulfide among the separating phases, and an initial 65 ppm Cu in the silicate melt, would result in the sequestration of up to 50% of the initial Ag, 60 % Cu, and > 99 % Au. | en_US |
dc.identifier.uri | http://hdl.handle.net/1903/12256 | |
dc.subject.pqcontrolled | Geology | en_US |
dc.subject.pqcontrolled | Petrology | en_US |
dc.subject.pqcontrolled | Geochemistry | en_US |
dc.subject.pquncontrolled | Experimental | en_US |
dc.subject.pquncontrolled | Magma | en_US |
dc.subject.pquncontrolled | Partition coefficients | en_US |
dc.subject.pquncontrolled | Porphyry depost | en_US |
dc.subject.pquncontrolled | Subduction Zone | en_US |
dc.subject.pquncontrolled | Sulfide | en_US |
dc.title | Metals in Arc Magmas: The Role of Cu-Rich Sulfide Phases | en_US |
dc.type | Dissertation | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Mengason_umd_0117E_12699.pdf
- Size:
- 4.48 MB
- Format:
- Adobe Portable Document Format