Asymptotic Normality of the Contraction Mapping Estimator for Frequency Estimation

dc.contributor.authorLi, Ta-Hsinen_US
dc.contributor.authorKedem, Benjaminen_US
dc.contributor.authorYakowitz, S.en_US
dc.contributor.departmentISRen_US
dc.date.accessioned2007-05-23T09:50:12Z
dc.date.available2007-05-23T09:50:12Z
dc.date.issued1992en_US
dc.description.abstractThis paper investigates the asymptotic distribution of the recently-proposed contraction mapping (CM) method for frequency estimation. Given a finite sample composed of a sinusoidal signal in additive noise, the CM method applies to the data a parametric filter that matches its parameter with the first-order autocorrelation of the filtered noise. The CM estimator is defined as the fixed-point of the parametrized first-order sample autocorrelation of the filtered data. In this paper, it is proved that under appropriate conditions, the CM estimator is asymptotically normal with a variance inversely related to the signal-to-noise ratio. A useful example of the AR(2) filter is discussed in detail to illustrate the performance of the CM method.en_US
dc.format.extent748832 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1903/5205
dc.language.isoen_USen_US
dc.relation.ispartofseriesISR; TR 1992-22en_US
dc.subjectestimationen_US
dc.subjectfilteringen_US
dc.subjectsignal processingen_US
dc.subjectCommunication en_US
dc.subjectSignal Processing Systemsen_US
dc.titleAsymptotic Normality of the Contraction Mapping Estimator for Frequency Estimationen_US
dc.typeTechnical Reporten_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
TR_92-22.pdf
Size:
731.28 KB
Format:
Adobe Portable Document Format