Probing the pan-genome of Listeria monocytogenes: new insights into intraspecific niche expansion and genomic diversification

dc.contributor.authorDeng, Xiangyu
dc.contributor.authorPhillippy, Adam M
dc.contributor.authorLi, Zengxin
dc.contributor.authorSalzberg, Steven L
dc.contributor.authorZhang, Wei
dc.date.accessioned2021-11-15T15:53:06Z
dc.date.available2021-11-15T15:53:06Z
dc.date.issued2010-09-16
dc.description.abstractBacterial pathogens often show significant intraspecific variations in ecological fitness, host preference and pathogenic potential to cause infectious disease. The species of Listeria monocytogenes, a facultative intracellular pathogen and the causative agent of human listeriosis, consists of at least three distinct genetic lineages. Two of these lineages predominantly cause human sporadic and epidemic infections, whereas the third lineage has never been implicated in human disease outbreaks despite its overall conservation of many known virulence factors. Here we compare the genomes of 26 L. monocytogenes strains representing the three lineages based on both in silico comparative genomic analysis and high-density, pan-genomic DNA array hybridizations. We uncover 86 genes and 8 small regulatory RNAs that likely make L. monocytogenes lineages differ in carbohydrate utilization and stress resistance during their residence in natural habitats and passage through the host gastrointestinal tract. We also identify 2,330 to 2,456 core genes that define this species along with an open pan-genome pool that contains more than 4,052 genes. Phylogenomic reconstructions based on 3,560 homologous groups allowed robust estimation of phylogenetic relatedness among L. monocytogenes strains. Our pan-genome approach enables accurate co-analysis of DNA sequence and hybridization array data for both core gene estimation and phylogenomics. Application of our method to the pan-genome of L. monocytogenes sheds new insights into the intraspecific niche expansion and evolution of this important foodborne pathogen.en_US
dc.description.urihttps://doi.org/10.1186/1471-2164-11-500
dc.identifierhttps://doi.org/10.13016/dxbu-ntef
dc.identifier.citationDeng, X., Phillippy, A.M., Li, Z. et al. Probing the pan-genome of Listeria monocytogenes: new insights into intraspecific niche expansion and genomic diversification. BMC Genomics 11, 500 (2010).en_US
dc.identifier.urihttp://hdl.handle.net/1903/28111
dc.language.isoen_USen_US
dc.publisherSpringer Natureen_US
dc.relation.isAvailableAtCollege of Computer, Mathematical & Physical Sciencesen_us
dc.relation.isAvailableAtDigital Repository at the University of Marylanden_us
dc.relation.isAvailableAtBiologyen_us
dc.relation.isAvailableAtUniversity of Maryland (College Park, MD)en_us
dc.subjectComparative Genomic Hybridizationen_US
dc.subjectCore Geneen_US
dc.subjectComparative Genomic Hybridization Arrayen_US
dc.subjectCore Genomeen_US
dc.subjectPositive Fractionen_US
dc.titleProbing the pan-genome of Listeria monocytogenes: new insights into intraspecific niche expansion and genomic diversificationen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
1471-2164-11-500.pdf
Size:
2.81 MB
Format:
Adobe Portable Document Format
Description: