RELIABILITY OF CERAMIC ELECTRODES OF SOLID OXIDE FUEL CELLS
Files
Publication or External Link
Date
Authors
Advisor
Citation
DRUM DOI
Abstract
Solid oxide fuel cells (SOFCs) are highly efficient chemical to electrical energy conversion devices that have potential in a global energy strategy. The wide adoption of SOFCs is currently limited by cell durability and manufacturing cost. Ceramic anodes show promise for improved durability and are prominent candidate for electrodes of SOFCs. Ishikawa diagram was developed and a comprehensive failure modes, mechanisms, effects, and criticality analysis (FMMECA) methodology is applied to ceramic anodes of SOFCs to understand possible causes of failure. Despite high conductivity and better performance of conventional ceramic electrodes i.e. strontium-based perovskite electrodes, there is a concern that humidity, especially high humidity and high temperature, during storage can affect the properties prior to installation. Degradation mechanisms which can manifest themselves during storage was found and empirical degradation model was developed to determine the storage specification for strontium-based perovskite electrodes of SOFCs.